Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
6th Edition
ISBN: 9780078028229
Author: Charles K Alexander, Matthew Sadiku
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 15, Problem 7RQ
To determine

Choose the correct option to find the inverse Laplace transform f(t) for the given function F(s)=e2ss+1.

Blurred answer
Students have asked these similar questions
Q9 A single-phase transformer, 2500 / 250 V, 50 kVA, 50 Hz has the following parameters, the Primary and secondary resistances are 0.8 ohm and 0.012 ohm respectively, the primary and secondary reactance are 4 ohm and 0.04 ohm respectively and the transformer gives 96% maximum efficiency at 75% full-load. The magnetizing component of-load current is 1.2 A on 2500 V side. 1- Draw the equivalent circuit referred to primary (H.V side) and inserts all the values in it 2- Find out Ammeter, voltmeter and wattmeter readings on open-circuit and short-circuit test. If supply is given to 2500 V side in both cases. Ans. O.C. Test (Vo= 2500 V, lo=1.24 A, Wo=781.25 w) S.C. Test (Vsc =164.924 V, Isc =20 A, Wsc =800 w )
A modulating signal f(t) is bandlimited to 5.5 kHz is sampled at a rate of 15000 samples/sec. The samples are quantized into 1024 levels. Calculate transmission bandwidth if the following modulation types are used for signal transmission: 1-ASK, QAM 2-QPSK, 8-PSK 3-FSK, 8-FSK with Af = 20 kHz
Q10 The full-load copper loss on the H.V. side of 100KVA, 11000/317 V, single-phase transformer is 0.62 kw and on the L.V. side is 0.48 kW. i) Calculate R1, R2 in ohms ii) Find X1,X2,if the percentage equivalent reactance is 4%, and reactance is divided in same proportion as resistance. Ans, 27.30, 0.175), 0.00482 . (7.5)

Chapter 15 Solutions

Fundamentals of Electric Circuits

Ch. 15.4 - Find g(t) given that G(s)=20(s+1)(s2+4s+13)Ch. 15.5 - Graphically convolve the two functions in Fig....Ch. 15.5 - Given g(t) and f(t) in Fig. 15.20, graphically...Ch. 15.5 - Use convolution to find vo(t) in the circuit of...Ch. 15.6 - Prob. 15PPCh. 15.6 - Prob. 16PPCh. 15 - Prob. 1RQCh. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - If F(s) = 1/(s + 2), then f(t) is (a) e2t u(t) (b)...Ch. 15 - Prob. 7RQCh. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQCh. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Find F(s) if: (a) ft=6etcosh2t (b) ft=3te2tsinh4t...Ch. 15 - If g(t) = 4e 2t cos 4t, find G(s).Ch. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 16PCh. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Design a problem to help other students better...Ch. 15 - Let F(s)=18(s+1)(s+2)(s+3) (a) Use the initial and...Ch. 15 - Determine the initial and final values of f(t), if...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Prob. 29PCh. 15 - Prob. 30PCh. 15 - Find f(t) for each F(s): (a) 10ss+1s+2s+3 (b)...Ch. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - Prob. 34PCh. 15 - Obtain f(t) for the following transforms: (a)...Ch. 15 - Prob. 36PCh. 15 - Prob. 37PCh. 15 - Prob. 38PCh. 15 - Determine f(t) if: (a)...Ch. 15 - Show that...Ch. 15 - Prob. 41PCh. 15 - Design a problem to help other students better...Ch. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Given h(t) = 4e2tu(t) and x(t) = (t) 2e 2tu(t),...Ch. 15 - Given the following functions...Ch. 15 - A system has the transfer function...Ch. 15 - Find f(t) using convolution given that: (a)...Ch. 15 - Prob. 49PCh. 15 - Prob. 50PCh. 15 - Given that v(0) = 5 and dv(0)/dt = 10, solve...Ch. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Design a problem to help other students better...Ch. 15 - Prob. 55PCh. 15 - Solve for v(t) in the integrodifferential equation...Ch. 15 - Prob. 57PCh. 15 - Given that dvdt+2v+50tv()d=4u(t) with v(0) = 1,...Ch. 15 - Solve the integrodifferential equation...Ch. 15 - Prob. 60P
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Notation and Basic Signal Properties; Author: Barry Van Veen;https://www.youtube.com/watch?v=2_Pl25nFhr4;License: Standard Youtube License