Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
6th Edition
ISBN: 9780078028229
Author: Charles K Alexander, Matthew Sadiku
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 39P

Determine f(t) if:

  1. (a) F ( s ) = 2 s 3 + 4 s 2 + 1 ( s 2 + 2 s + 17 ) ( s 2 + 4 s + 20 )
  2. (b) F ( s ) = s 3 + 4 ( s 2 + 9 ) ( s 2 + 6 s + 3 )

(a)

Expert Solution
Check Mark
To determine

Find the inverse Laplace transform for the function F(s)=2s3+4s2+1(s2+2s+17)(s2+4s+20).

Answer to Problem 39P

The inverse Laplace transform for the given function is

f(t)=[1.6etcos(4t)4.05etsin(4t)+3.6e2tcos(4t)+3.45e2tsin(4t)]u(t).

Explanation of Solution

Given data:

The Laplace transform function is,

F(s)=2s3+4s2+1(s2+2s+17)(s2+4s+20)        (1)

Formula used:

Write the general expression for the inverse Laplace transform.

f(t)=1[F(s)]        (2)

Write the general expression to find the inverse Laplace transform function.

1[s+a(s+a)2+ω2]=eatcosωtu(t)        (3)

1[ω(s+a)2+ω2]=eatsinωtu(t)        (4)

Here,

ω is the angular frequency,

s+a is the frequency shift or frequency translation, and

s is a complex variable.

Calculation:

Expand F(s) using partial fraction.

F(s)=2s3+4s2+1(s2+2s+17)(s2+4s+20)=As+Bs2+2s+17+Cs+Ds2+4s+20        (5)

Here,

A, B, C, and D are the constants.

Find the constants by using algebraic method.

Consider the partial fraction,

2s3+4s2+1(s2+2s+17)(s2+4s+20)=As+Bs2+2s+17+Cs+Ds2+4s+202s3+4s2+1(s2+2s+17)(s2+4s+20)=(As+B)(s2+4s+20)+(Cs+D)(s2+2s+17)(s2+2s+17)(s2+4s+20)2s3+4s2+1=(As+B)(s2+4s+20)+(Cs+D)(s2+2s+17)2s3+4s2+1=(As3+4As2+20As+Bs2+4Bs+20B+Cs3+2Cs2+17Cs+Ds2+2Ds+17D)

Reduce the equation as follows,

2s3+4s2+1=[(A+C)s3+(4A+B+2C+D)s2+(20A+4B+17C+2D)s+(20B+17D)]        (6)

Equating the coefficients of s3 in equation (6).

A+C=2

C=2A        (7)

Equating the coefficients of s2 in equation (6).

4A+B+2C+D=44A=4B2CDA=4B2CD4

A=10.25B0.5C0.25D        (8)

Equating the coefficients of s in equation (6).

20A+4B+17C+2D=0        (9)

Equating the coefficients of constant term in equation (6).

20B+17D=120B=117DB=117D20

B=0.050.85D        (10)

Substitute equation (7) and (10) in equation (9).

20A+4(0.050.85D)+17(2A)+2D=020A+0.23.4D+3417A+2D=03A1.4D=340.21.4D=3A+34.2

Rearrange the equation as follows,

D=3A+34.21.4

D=2.1429A+24.4286        (11)

Substitute equation (11) in equation (10).

B=0.050.85(2.1429A+24.4286)=0.051.8215A20.7643

B=20.71431.8215A        (12)

Substitute equation (7), (11), and (12) in equation (8) to find the constant A.

A=10.25(20.71431.8215A)0.5(2A)0.25(2.1429A+24.4286)A=1+5.1786+0.4554A1+0.5A0.5357A6.1072A0.4554A0.5A+0.5357A=1+5.178616.10720.5803A=0.9286

Reduce the equation as follows,

A=0.92860.5803

A=1.6        (13)

Substitute equation (13) in equation (12) to find the constant B.

B=20.71431.8215(1.6)

B=17.8        (14)

Substitute equation (13) in equation (11) to find the constant D.

D=2.1429(1.6)+24.4286=20.9999

D21        (15)

Substitute equation (13) in equation (7).

C=2(1.6)

C=3.6        (16)

Substitute equation (13), (14), (15), and (16) in equation (5) to find F(s).

F(s)=1.6s17.8s2+2s+17+3.6s+21s2+4s+20=1.6s1.616.2s2+1s+1s+1+16+3.6s+7.2+13.8s2+2s+2s+4+16=1.6(s+1)16.2s(s+1)+1(s+1)+42+3.6(s+2)+13.8s(s+2)+2(s+2)+42=1.6(s+1)(s+1)(s+1)+42(4.05×4)(s+1)(s+1)+42+3.6(s+2)(s+2)(s+2)+42+(3.45×4)(s+2)(s+2)+42

Reduce the equation as follows,

F(s)=1.6(s+1)(s+1)2+42(4.05×4)(s+1)2+42+3.6(s+2)(s+2)2+42+(3.45×4)(s+2)2+42        (17)

Apply inverse Laplace transform given in equation (2) to equation (17). Therefore,

f(t)=1[1.6(s+1)(s+1)2+42(4.05×4)(s+1)2+42+3.6(s+2)(s+2)2+42+(3.45×4)(s+2)2+42]

f(t)=1.61[s+1(s+1)2+42]4.051[4(s+1)2+42]+3.61[s+2(s+2)2+42]+3.451[4(s+2)2+42]        (18)

Apply inverse Laplace transform function of equation (3) and (4) in equation (18).

f(t)=[1.6etcos(4t)u(t)4.05etsin(4t)u(t)+3.6e2tcos(4t)u(t)+3.45e2tsin(4t)u(t)]=[1.6etcos(4t)4.05etsin(4t)+3.6e2tcos(4t)+3.45e2tsin(4t)]u(t)

Conclusion:

Thus, the inverse Laplace transform for the given function is

f(t)=[1.6etcos(4t)4.05etsin(4t)+3.6e2tcos(4t)+3.45e2tsin(4t)]u(t).

(b)

Expert Solution
Check Mark
To determine

Find the inverse Laplace transform for the given function F(s)=s2+4(s2+9)(s2+6s+3).

Answer to Problem 39P

The inverse Laplace transform for the given function is

f(t)=[0.08333cos(3t)+0.02778sin(3t)+0.0944e0.551t0.1778e5.449t]u(t).

Explanation of Solution

Given data:

The Laplace transform function is,

F(s)=s2+4(s2+9)(s2+6s+3)        (19)

Formula used:

Write the general expressions to find the inverse Laplace transform function.

1[1s+a]=eatu(t)        (20)

1[ss2+ω2]=cosωtu(t)        (21)

1[ωs2+ω2]=sinωtu(t)        (22)

Calculation:

Expand F(s) using partial fraction.

F(s)=s2+4(s2+9)(s2+6s+3)=As+Bs2+9+Cs+Ds2+6s+3        (23)

Here,

A, B, C, and D are the constants.

Find the constants by using algebraic method.

Consider the partial fraction,

s2+4(s2+9)(s2+6s+3)=As+Bs2+9+Cs+Ds2+6s+3s2+4(s2+9)(s2+6s+3)=(As+B)(s2+6s+3)+(Cs+D)(s2+9)(s2+9)(s2+6s+3)s2+4=(As+B)(s2+6s+3)+(Cs+D)(s2+9)s2+4=As3+6As2+3As+Bs2+6Bs+3B+Cs3+9Cs+Ds2+9D

Reduce the equation as follows,

s2+4=(A+C)s3+(6A+B+D)s2+(3A+6B+9C)s+(3B+9D)        (24)

Equating the coefficients of s3 in equation (24).

A+C=0

A=C        (25)

Equating the coefficients of s2 in equation (24).

6A+B+D=1        (26)

Equating the coefficients of s in equation (24).

3A+6B+9C=0        (27)

Substitute equation (25) in equation (27).

3(C)+6B+9C=06B+6C=0B+C=0

B=C        (28)

Substitute equation (28) in equation (25).

A=B        (29)

Equating the coefficients of constant term in equation (24).

3B+9D=4        (30)

Rearrange the equation (30) as follows,

3B=49DB=49D3

B=433D        (31)

Substitute equation (29) in equation (30).

3A+9D=43A=49DA=49D3

A=433D        (32)

Substitute equation (31) and (32) in equation (26).

6(433D)+(433D)+D=1818D+433D+D=118D3D+D=184320D=253

Reduce the equation as follows,

D=253×20=2560

D=512        (33)

Substitute equation (33) in equation (32).

A=433(512)=4354

A=112        (34)

Substitute equation (34) in equation (29).

B=112        (35)

Substitute equation (34) in equation (25).

112=C

C=112        (36)

Substitute equation (33), (34), (35), and (36) in equation (23) to find F(s).

F(s)=(112)s+(112)s2+9+(112)s+(512)s2+6s+3

12F(s)=s+1s2+9+s+5s2+6s+3        (37)

Expand s+5s2+6s+3 using partial fraction in equation (37)

The roots of s2+6s+3 is calculated as follows,

s=6±624(1)(3)2(1){x=b±b24ac2a}=6±242=6+242,6242=0.551,5.449

Therefore, the roots of s2+6s+3 is (s+0.551)(s+5.449).

Consider the partial fraction,

s+5s2+6s+3=s+5(s+0.551)(s+5.449)=Es+0.551+Fs+5.449        (38)

Here,

E and F are the constants.

Find the constants by using algebraic method.

s+5(s+0.551)(s+5.449)=Es+0.551+Fs+5.449s+5(s+0.551)(s+5.449)=E(s+5.449)+F(s+0.551)(s+0.551)(s+5.449)s+5=E(s+5.449)+F(s+0.551)s+5=Es+5.449E+Fs+0.551F

Reduce the equation as follows,

s+5=(E+F)s+(5.449E+0.551F)        (39)

Equating the coefficients of s in equation (39).

E+F=1

E=1F        (40)

Equating the coefficients of constant term in equation (39).

5.449E+0.551F=5        (41)

Substitute equation (40) in equation (41).

5.449(1F)+0.551F=55.4495.449F+0.551F=55.449F+0.551F=5+5.4494.898F=10.449

Rearrange the equation as follows,

F=10.4494.898

F=2.133        (42)

Substitute equation (42) in equation (40) to find the constant E.

E=1(2.133)

E=1.133        (43)

Substitute equation (42) and (43) in equation (38).

s+5s2+6s+3=1.133s+0.5512.133s+5.449

Substitute 1.133s+0.5512.133s+5.449 for s+5s2+6s+3 in equation (37).

12F(s)=s+1s2+9+1.133s+0.5512.133s+5.449F(s)=112[ss2+32+1s2+32+1.133s+0.5512.133s+5.449]

F(s)=112[ss2+32+(33)s2+32+1.133s+0.5512.133s+5.449]        (44)

Apply inverse Laplace transform given in equation (2) to equation (44). Therefore,

f(t)=1[112[ss2+32+133s2+32+1.133s+0.5512.133s+5.449]]f(t)=1121[ss2+32]+1361[3s2+32]+1.133121[1s+0.551]2.133121[1s+5.449]

f(t)={0.083331[ss2+32]+0.027781[3s2+32]+0.09441[1s+0.551]0.17781[1s+5.449]}        (45)

Apply inverse Laplace transform function of equation (20), (21) and (22) in equation (45).

f(t)=0.08333cos(3t)u(t)+0.02778sin(3t)u(t)+0.0944e0.551tu(t)0.1778e5.449tu(t)=[0.08333cos(3t)+0.02778sin(3t)+0.0944e0.551t0.1778e5.449t]u(t)

Conclusion:

Thus, the inverse Laplace transform for the given function is

f(t)=[0.08333cos(3t)+0.02778sin(3t)+0.0944e0.551t0.1778e5.449t]u(t).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
i need the answer quickly
3. Write the state equations and the output equation R(s) 8s + 10 C(s) 4 + 5s3 + s2 + 5s + 13
Sketch the following signals

Chapter 15 Solutions

Fundamentals of Electric Circuits

Ch. 15.4 - Find g(t) given that G(s)=20(s+1)(s2+4s+13)Ch. 15.5 - Graphically convolve the two functions in Fig....Ch. 15.5 - Given g(t) and f(t) in Fig. 15.20, graphically...Ch. 15.5 - Use convolution to find vo(t) in the circuit of...Ch. 15.6 - Prob. 15PPCh. 15.6 - Prob. 16PPCh. 15 - Prob. 1RQCh. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - If F(s) = 1/(s + 2), then f(t) is (a) e2t u(t) (b)...Ch. 15 - Prob. 7RQCh. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQCh. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Find F(s) if: (a) ft=6etcosh2t (b) ft=3te2tsinh4t...Ch. 15 - If g(t) = 4e 2t cos 4t, find G(s).Ch. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 16PCh. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Design a problem to help other students better...Ch. 15 - Let F(s)=18(s+1)(s+2)(s+3) (a) Use the initial and...Ch. 15 - Determine the initial and final values of f(t), if...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Prob. 29PCh. 15 - Prob. 30PCh. 15 - Find f(t) for each F(s): (a) 10ss+1s+2s+3 (b)...Ch. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - Prob. 34PCh. 15 - Obtain f(t) for the following transforms: (a)...Ch. 15 - Prob. 36PCh. 15 - Prob. 37PCh. 15 - Prob. 38PCh. 15 - Determine f(t) if: (a)...Ch. 15 - Show that...Ch. 15 - Prob. 41PCh. 15 - Design a problem to help other students better...Ch. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Given h(t) = 4e2tu(t) and x(t) = (t) 2e 2tu(t),...Ch. 15 - Given the following functions...Ch. 15 - A system has the transfer function...Ch. 15 - Find f(t) using convolution given that: (a)...Ch. 15 - Prob. 49PCh. 15 - Prob. 50PCh. 15 - Given that v(0) = 5 and dv(0)/dt = 10, solve...Ch. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Design a problem to help other students better...Ch. 15 - Prob. 55PCh. 15 - Solve for v(t) in the integrodifferential equation...Ch. 15 - Prob. 57PCh. 15 - Given that dvdt+2v+50tv()d=4u(t) with v(0) = 1,...Ch. 15 - Solve the integrodifferential equation...Ch. 15 - Prob. 60P
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Types of Systems; Author: Neso Academy;https://www.youtube.com/watch?v=IRdDcSO_fQw;License: Standard youtube license