Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
6th Edition
ISBN: 9780078028229
Author: Charles K Alexander, Matthew Sadiku
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 15, Problem 55P
To determine

Find the time-varying function y(t) for the given differential equation using Laplace transform method.

Expert Solution & Answer
Check Mark

Answer to Problem 55P

The time-varying function y(t) for the given differential equation is (140+120e2t3104e4t365etcos(2t)265etsin(2t))u(t).

Explanation of Solution

Given data:

The differential equation is,

d3ydt3+6d2ydt2+8dydt=etcos2t (1)

The initial conditions are zero. That is,

y(0)=y'(0)=y''(0)=0

Formula used:

Write the general expression for the Laplace transform.

F(s)=L[f(t)] (2)

Write the general expression for the inverse Laplace transform.

f(t)=L1[F(s)] (3)

Write the general expressions to find the Laplace transform function.

L[dfdt]=sF(s)f(0) (4)

L[d2fdt2]=s2F(s)sf(0)f'(0) (5)

L[d3fdt3]=s3F(s)s2f(0)sf'(0)f''(0) (6)

L[eatcosωt]=s+a(s+a)2+ω2 (7)

Here,

s is a complex variable,

ω is the angular frequency, and

s+a is the frequency shift or frequency translation.

Write the general expressions to find the inverse Laplace transform function.

L1[1s+a]=eatu(t) (8)

L1[s+a(s+a)2+ω2]=eatcosωtu(t) (9)

L1[ω(s+a)2+ω2]=eatsinωtu(t) (10)

L1[1s]=u(t) (11)

Calculation:

Apply Laplace transform function given in equation (2), (4), (5), (6) and (7) to equation (1).

([s3Y(s)s2y(0)sy'(0)y''(0)]+6[s2Y(s)sy(0)y'(0)]+8[sY(s)y(0)])=s+1(s+1)2+22

([s3Y(s)s2y(0)sy'(0)y''(0)]+6[s2Y(s)sy(0)y'(0)]+8[sY(s)y(0)])=s+1(s+1)2+22{y(0)=y(0),y'(0)=y'(0)} (12)

Substitute 0 for y(0), 0 for y'(0) and 0 for y''(0) in equation (12).

[s3Y(s)s2(0)s(0)0]+6[s2Y(s)s(0)0]+8[sY(s)0]=s+1(s+1)2+22s3Y(s)+6s2Y(s)+8sY(s)=s+1s2+2s+1+22{(a+b)2=a2+2ab+b2}(s3+6s2+8s)Y(s)=s+1s2+2s+1+4

(s3+6s2+8s)Y(s)=s+1s2+2s+5 (13)

Rearrange the equation (13) to find Y(s).

Y(s)=s+1(s3+6s2+8s)(s2+2s+5)=s+1s(s2+6s+8)(s2+2s+5)=s+1s(s2+2s+4s+8)(s2+2s+5)=s+1s(s(s+2)+4(s+2))(s2+2s+5)

Reduce the equation as follows,

Y(s)=s+1s(s+2)(s+4)(s2+2s+5) (14)

Expand Y(s) using partial fraction.

Y(s)=s+1s(s+2)(s+4)(s2+2s+5)=As+Bs+2+Cs+4+Ds+Es2+2s+5 (15)

Here,

A, B, C, D and E are the constants.

Now, to find the constants by using residue and algebraic method.

Constant A:

A=sY(s)|s=0 (16)

Substitute equation (14) in equation (16) to find the constant A.

A=s×s+1s(s+2)(s+4)(s2+2s+5)|s=0=s+1(s+2)(s+4)(s2+2s+5)|s=0=0+1(0+2)(0+4)((0)2+2(0)+5)=140

Constant B:

B=(s+2)Y(s)|s+2=0 (17)

Substitute equation (14) in equation (17) to find the constant B.

B=(s+2)×s+1s(s+2)(s+4)(s2+2s+5)|s=2=s+1s(s+4)(s2+2s+5)|s=2=2+1(2)(2+4)((2)2+2(2)+5)=120

Constant C:

C=(s+4)Y(s)|s+4=0 (18)

Substitute equation (14) in equation (18) to find the constant C.

C=(s+4)×s+1s(s+2)(s+4)(s2+2s+5)|s=4=s+1s(s+2)(s2+2s+5)|s=4=4+1(4)(4+2)((4)2+2(4)+5)=3104

Consider the partial fraction,

s+1s(s+2)(s+4)(s2+2s+5)=As+Bs+2+Cs+4+Ds+Es2+2s+5s+1s(s+2)(s+4)(s2+2s+5)=(A(s+2)(s+4)(s2+2s+5)+Bs(s+4)(s2+2s+5)+Cs(s+2)(s2+2s+5)+(Ds+E)s(s+2)(s+4))s(s+2)(s+4)(s2+2s+5)s+1=(A(s+2)(s+4)(s2+2s+5)+Bs(s+4)(s2+2s+5)+Cs(s+2)(s2+2s+5)+(Ds+E)s(s+2)(s+4))s+1=(A(s2+2s+4s+8)(s2+2s+5)+B(s2+4s)(s2+2s+5)+C(s2+2s)(s2+2s+5)+(Ds+E)s(s2+2s+4s+8))

Reduce the equation as follows,

s+1=(A(s2+6s+8)(s2+2s+5)+B(s4+2s3+5s2+4s3+8s2+20s)+C(s4+2s3+5s2+2s3+4s2+10s)+(Ds+E)(s3+6s2+8s))s+1=(A(s4+2s3+5s2+6s3+12s2+30s+8s2+16s+40)+B(s4+6s3+13s2+20s)+C(s4+4s3+9s2+10s)+D(s4+6s3+8s2)+E(s3+6s2+8s))s+1=(As4+8As3+25As2+46As+40A+Bs4+6Bs3+13Bs2+20Bs+Cs4+4Cs3+9Cs2+10Cs+Ds4+6Ds3+8Ds2+Es3+6Es2+8Es)

s+1=((A+B+C+D)s4+(8A+6B+4C+6D+E)s3+(25A+13B+9C+8D+6E)s2+(46A+20B+10C+8E)s+40A) (19)

Equate the coefficients of s4 in equation (19).

0=A+B+C+D (20)

Substitute 140 for A, 120 for B, and 3104 for C in equation (20) to find the constant D.

0=140+1203104+DD=140120+3104D=365

Equate the coefficients of s3 in equation (19).

0=8A+6B+4C+6D+E (21)

Substitute 140 for A, 120 for B, 3104 for C, and 365 for D in equation (21) to find the constant E.

0=8(140)+6(120)+4(3104)+6(365)+EE=840620+12104+1865E=765

Substitute 140 for A, 120 for B, 3104 for C, 365 for D, and 765 for E in equation (15) to find Y(s).

Y(s)=(140)s+(120)s+2+(3104)s+4+(365)s+(765)s2+2s+5=(140)s+(120)s+2+(3104)s+4+(165)(3s+7)s2+2s+1+4=(140)s+(120)s+2+(3104)s+4+(165)(3s+3+4)(s+1)2+4{(a+b)2=a2+2ab+b2}

Reduce the equation as follows,

Y(s)=(140)s+(120)s+2+(3104)s+4+(165)(3s+3)+(165)4(s+1)2+4=(140)s+(120)s+2+(3104)s+4+(365)(s+1)(s+1)2+4+(165)4(s+1)2+4

Y(s)=(140)s+(120)s+2+(3104)s+4+(365)(s+1)(s+1)2+22+(265)2(s+1)2+22 (22)

Apply inverse Laplace transform given in equation (3) to equation (22). Therefore,

y(t)=L1[Y(s)]=L1[(140)s+(120)s+2+(3104)s+4+(365)(s+1)(s+1)2+22+(265)2(s+1)2+22]={L1[(140)s]+L1[(120)s+2]+L1[(3104)s+4]+L1[(365)(s+1)(s+1)2+22]+L1[(265)2(s+1)2+22]}

y(t)={140L1[1s]+120L1[1s+2]3104L1[1s+4]365L1[(s+1)(s+1)2+22]265L1[2(s+1)2+22]} (23)

Apply inverse Laplace transform function given in equation (8), (9), (10) and (11) to equation (23).

y(t)=140u(t)+120e2tu(t)3104e4tu(t)365etcos(2t)u(t)265etsin(2t)u(t)=(140+120e2t3104e4t365etcos(2t)265etsin(2t))u(t)

Conclusion:

Thus, the time-varying function y(t) for the given differential equation is (140+120e2t3104e4t365etcos(2t)265etsin(2t))u(t).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q1 .For the unity feedback control system shown below, discuss the stability using Bode Plot
Q4: Given a discrete data array x(n₁, n2) defined as: 31 x(n₁, n₂) = 1 1 2 2 11 2. (a) Compute the two-dimensional (2-D) DFT X(k₁, k₂), using row-column (RC) algorithm. (b) Repeat part (a) using vector-radix (VR) FFT algorithm.
DO NOT USE AI OR CHATGPT NEED HANDWRITTEN SOLUTION

Chapter 15 Solutions

Fundamentals of Electric Circuits

Ch. 15.4 - Find g(t) given that G(s)=20(s+1)(s2+4s+13)Ch. 15.5 - Graphically convolve the two functions in Fig....Ch. 15.5 - Given g(t) and f(t) in Fig. 15.20, graphically...Ch. 15.5 - Use convolution to find vo(t) in the circuit of...Ch. 15.6 - Prob. 15PPCh. 15.6 - Prob. 16PPCh. 15 - Prob. 1RQCh. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - If F(s) = 1/(s + 2), then f(t) is (a) e2t u(t) (b)...Ch. 15 - Prob. 7RQCh. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQCh. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Find F(s) if: (a) ft=6etcosh2t (b) ft=3te2tsinh4t...Ch. 15 - If g(t) = 4e 2t cos 4t, find G(s).Ch. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 16PCh. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Design a problem to help other students better...Ch. 15 - Let F(s)=18(s+1)(s+2)(s+3) (a) Use the initial and...Ch. 15 - Determine the initial and final values of f(t), if...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Prob. 29PCh. 15 - Prob. 30PCh. 15 - Find f(t) for each F(s): (a) 10ss+1s+2s+3 (b)...Ch. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - Prob. 34PCh. 15 - Obtain f(t) for the following transforms: (a)...Ch. 15 - Prob. 36PCh. 15 - Prob. 37PCh. 15 - Prob. 38PCh. 15 - Determine f(t) if: (a)...Ch. 15 - Show that...Ch. 15 - Prob. 41PCh. 15 - Design a problem to help other students better...Ch. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Given h(t) = 4e2tu(t) and x(t) = (t) 2e 2tu(t),...Ch. 15 - Given the following functions...Ch. 15 - A system has the transfer function...Ch. 15 - Find f(t) using convolution given that: (a)...Ch. 15 - Prob. 49PCh. 15 - Prob. 50PCh. 15 - Given that v(0) = 5 and dv(0)/dt = 10, solve...Ch. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Design a problem to help other students better...Ch. 15 - Prob. 55PCh. 15 - Solve for v(t) in the integrodifferential equation...Ch. 15 - Prob. 57PCh. 15 - Given that dvdt+2v+50tv()d=4u(t) with v(0) = 1,...Ch. 15 - Solve the integrodifferential equation...Ch. 15 - Prob. 60P
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,