Fundamentals of Electric Circuits
6th Edition
ISBN: 9780078028229
Author: Charles K Alexander, Matthew Sadiku
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 18P
(a)
To determine
Find the Laplace transform of the non-periodic function
(b)
To determine
Find the Laplace transform of the non-periodic function
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. A 600-V, 150-HP, 600 r.p.m. d.c. series motor has an armature and series field resistance of 0.120 and
0.040, respectively. The full-load current is 200A.
(a) Find the back e.m.f. at full-load.
(b) Find the armature developed power and torque at full-load.
Ans. [568V, 1808.13 N.m]
3.
An electrical device shown below has the following depicted voltage and current
definition. The current in and the voltage vin for a certain period is recorded as shown in the
bottom picture.
(1) In different periods from 0 to time T4, determine if the electrical device works as a load or a
source.
iin
+
iin
Vin
Electrical Device
0
T₁
T2
T3
ΤΑ
t
Vin
T2
ΤΑ
t
1. A 220V d.c. shunt motor has a 5V brush drop, an armature resistance of 0.20, and a rated armature
current of 40A. Calculate:
(a) the counter-back e.m.f. (EC),
(b) power developed by the armature (Pd) in watts
(c) mechanical power developed by the armature in horsepower.
Ans.[207V, 8280 W, 11.099hp]
Chapter 15 Solutions
Fundamentals of Electric Circuits
Ch. 15.2 - Prob. 1PPCh. 15.2 - Prob. 2PPCh. 15.3 - Prob. 3PPCh. 15.3 - Prob. 4PPCh. 15.3 - Prob. 5PPCh. 15.3 - Prob. 6PPCh. 15.3 - Obtain the initial and the final values of...Ch. 15.4 - Prob. 8PPCh. 15.4 - Find f(t) if F(s)=48(s+2)(s+1)(s+3)(s+4)Ch. 15.4 - Obtain g(t) if G(s)=s3+2s+6s(s+1)2(s+3)
Ch. 15.4 - Find g(t) given that G(s)=20(s+1)(s2+4s+13)Ch. 15.5 - Graphically convolve the two functions in Fig....Ch. 15.5 - Given g(t) and f(t) in Fig. 15.20, graphically...Ch. 15.5 - Use convolution to find vo(t) in the circuit of...Ch. 15.6 - Prob. 15PPCh. 15.6 - Prob. 16PPCh. 15 - Prob. 1RQCh. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - If F(s) = 1/(s + 2), then f(t) is (a) e2t u(t) (b)...Ch. 15 - Prob. 7RQCh. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQCh. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Find F(s) if: (a) ft=6etcosh2t (b) ft=3te2tsinh4t...Ch. 15 - If g(t) = 4e 2t cos 4t, find G(s).Ch. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 16PCh. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Design a problem to help other students better...Ch. 15 - Let F(s)=18(s+1)(s+2)(s+3) (a) Use the initial and...Ch. 15 - Determine the initial and final values of f(t), if...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Prob. 29PCh. 15 - Prob. 30PCh. 15 - Find f(t) for each F(s): (a) 10ss+1s+2s+3 (b)...Ch. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - Prob. 34PCh. 15 - Obtain f(t) for the following transforms: (a)...Ch. 15 - Prob. 36PCh. 15 - Prob. 37PCh. 15 - Prob. 38PCh. 15 - Determine f(t) if: (a)...Ch. 15 - Show that...Ch. 15 - Prob. 41PCh. 15 - Design a problem to help other students better...Ch. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Given h(t) = 4e2tu(t) and x(t) = (t) 2e 2tu(t),...Ch. 15 - Given the following functions...Ch. 15 - A system has the transfer function...Ch. 15 - Find f(t) using convolution given that: (a)...Ch. 15 - Prob. 49PCh. 15 - Prob. 50PCh. 15 - Given that v(0) = 5 and dv(0)/dt = 10, solve...Ch. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Design a problem to help other students better...Ch. 15 - Prob. 55PCh. 15 - Solve for v(t) in the integrodifferential equation...Ch. 15 - Prob. 57PCh. 15 - Given that dvdt+2v+50tv()d=4u(t) with v(0) = 1,...Ch. 15 - Solve the integrodifferential equation...Ch. 15 - Prob. 60P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Tests are carried on 400 V, 60 Hz, Y-connected, wound rotor three-phase induction motor with the following test results: DC Test: 21 V, 43 A No Load Test: 400 V, 20 A, 1200 W, 60 Hz Blocked Rotor Test: 100 V, 44 A, 2700 W, 19 Hz Find R1, X1, R2, X2, and Xm of this motor? xxx₁ = 0.5xbm fy Pen Pd 51-5 NN (1-5) 1208 1 [10Marks] N wr Parrow_forward5- A 250 V shunt motor operates on full load at 1500 rpm and draws line current 20 A. The armature has 6 poles and is lap wound with 200 turns. Find the induced emf and the flux/pole at full load. Given that the armature and field resistances are 0.5 and 125 2 respectively. Ans.[ 24.1 m Wb]arrow_forwardNot: I need also pictures cct diagram and result Question: I need a MATLAB/Simulink model for a Boost Converter used to charge a battery, powered by a PV solar panel. The model should include: 1. A PV solar panel as the input power source. 2. A Boost Converter circuit for voltage regulation. 3. A battery charging system. 4. Simulation results showing voltage, current, and efficiency of the system. Important: Please provide: 1. The Simulink file of the model. 2. Clear screenshots showing the circuit connections in MATLAB/Simulink. 3. Screenshots of the simulation results (voltage, current, efficiency, etc.).arrow_forward
- NEED HANDWRITTEN SOLUTION PLEASE DO NOT USE AIarrow_forwardNot: I need also pictures cct diagram and result Question: I need a MATLAB/Simulink model for a Boost Converter used to charge a battery, powered by a PV solar panel. The model should include: 1. A PV solar panel as the input power source. 2. A Boost Converter circuit for voltage regulation. 3. A battery charging system. 4. Simulation results showing voltage, current, and efficiency of the system.arrow_forwardDetermine the node voltages V1, V2, V3, and V4, for the circuit shown in the figure where R1-15.2, R2=652, R3-72 and R4=5.2. 5 V V2 R1 w V1 R2 V3 R3 + 1.25 A R4 ①1.25 V4 15 Varrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardI need solutions to this project question, expertly solve darrow_forwardHANDWRITTEN SOLUTION NOT USING AIUsing nodal analysis, find V_o in the networkarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,