Foundations of College Chemistry, Binder Ready Version
15th Edition
ISBN: 9781119083900
Author: Morris Hein, Susan Arena, Cary Willard
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 54AE
Interpretation Introduction
Interpretation:
Molarity of
Concept Introduction:
Molarity is quantitatively defined as moles of solute in one liter of solution. For example
Here,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
20.00 mL of HCl solution was titrated with 0.1015 M NaOH. What is the concentration of the HCl solution if the reaction needed to 23.45 mL of NaOH to reach end point?
NaOH(aq) + HCl(aq) ---> NaCl(aq) + H2O(l)
Group of answer choices
0. 104 M
0.109 M
0.112 M
0.119 M
Suppose you have 50.0 mL of a solution of an unknown concentration of hydrochloric acid HCl solution. You titrate the HCl solution with a 0.1 M solution of calcium hydroxide Ca(OH)2 and use 13.5 mL of Ca(OH)2 to reach the endpoint.
4a) What is the molarity of the hydrochloric acid HCl solution?
4b) What is the pH of hydrochloric acid HCl solution?
A 25.00 mL sample of 0.1500 M lactic acid was added to a beaker. It was titrated with a 0.1700 M of NaOH in a burette. K₂ =1.4x104 of lactic acid. Calculate the pH when 8.00 mL of NaOH is added in the titration.
Chapter 15 Solutions
Foundations of College Chemistry, Binder Ready Version
Ch. 15.1 - Prob. 15.1PCh. 15.1 - Prob. 15.2PCh. 15.2 - Prob. 15.3PCh. 15.2 - Prob. 15.4PCh. 15.3 - Prob. 15.5PCh. 15.4 - Prob. 15.6PCh. 15.5 - Prob. 15.7PCh. 15.6 - Prob. 15.8PCh. 15 - Prob. 1RQCh. 15 - Prob. 2RQ
Ch. 15 - Prob. 3RQCh. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - Prob. 6RQCh. 15 - Prob. 7RQCh. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQCh. 15 - Prob. 11RQCh. 15 - Prob. 12RQCh. 15 - Prob. 13RQCh. 15 - Prob. 14RQCh. 15 - Prob. 15RQCh. 15 - Prob. 16RQCh. 15 - Prob. 17RQCh. 15 - Prob. 18RQCh. 15 - Prob. 19RQCh. 15 - Prob. 20RQCh. 15 - Prob. 21RQCh. 15 - Prob. 22RQCh. 15 - Prob. 23RQCh. 15 - Prob. 24RQCh. 15 - Prob. 25RQCh. 15 - Prob. 26RQCh. 15 - Prob. 27RQCh. 15 - Prob. 28RQCh. 15 - Prob. 1PECh. 15 - Prob. 2PECh. 15 - Prob. 3PECh. 15 - Prob. 4PECh. 15 - Prob. 5PECh. 15 - Prob. 6PECh. 15 - Prob. 7PECh. 15 - Prob. 8PECh. 15 - Prob. 9PECh. 15 - Prob. 10PECh. 15 - Prob. 11PECh. 15 - Prob. 12PECh. 15 - Prob. 13PECh. 15 - Prob. 14PECh. 15 - Prob. 15PECh. 15 - Prob. 16PECh. 15 - Prob. 17PECh. 15 - Prob. 18PECh. 15 - Prob. 19PECh. 15 - Prob. 20PECh. 15 - Prob. 21PECh. 15 - Prob. 22PECh. 15 - Prob. 23PECh. 15 - Prob. 24PECh. 15 - Prob. 25PECh. 15 - Prob. 26PECh. 15 - Prob. 27PECh. 15 - Prob. 28PECh. 15 - Prob. 29PECh. 15 - Prob. 30PECh. 15 - Prob. 31PECh. 15 - Prob. 32PECh. 15 - Prob. 33PECh. 15 - Prob. 34PECh. 15 - Prob. 35PECh. 15 - Prob. 36PECh. 15 - Prob. 37PECh. 15 - Prob. 38PECh. 15 - Prob. 39PECh. 15 - Prob. 40PECh. 15 - Prob. 41PECh. 15 - Prob. 42PECh. 15 - Prob. 43PECh. 15 - Prob. 44PECh. 15 - Prob. 45AECh. 15 - Prob. 46AECh. 15 - Prob. 47AECh. 15 - Prob. 48AECh. 15 - Prob. 49AECh. 15 - Prob. 50AECh. 15 - Prob. 51AECh. 15 - Prob. 52AECh. 15 - Prob. 53AECh. 15 - Prob. 54AECh. 15 - Prob. 55AECh. 15 - Prob. 56AECh. 15 - Prob. 57AECh. 15 - Prob. 58AECh. 15 - Prob. 59AECh. 15 - Prob. 60AECh. 15 - Prob. 61AECh. 15 - Prob. 62AECh. 15 - Prob. 63AECh. 15 - Prob. 64AECh. 15 - Prob. 65AECh. 15 - Prob. 66AECh. 15 - Prob. 67AECh. 15 - Prob. 68AECh. 15 - Prob. 69AECh. 15 - Prob. 70AECh. 15 - Prob. 71AECh. 15 - Prob. 72AECh. 15 - Prob. 73CECh. 15 - Prob. 74CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Phenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forwardDoes the pH of the solution increase, decrease, or stay the same when you (a) Add solid sodium oxalate, Na2C2O4, to 50.0 mL of 0.015-M oxalic acid? (b) Add solid ammonium chloride to 100. mL of 0.016-M HCl? (c) Add 20.0 g NaCl to 1.0 L of 0.012-M sodium acetate, NaCH3COO?arrow_forwardThe composition diagram, or alpha plot, for the important acid-base system of carbonic acid, H2CO3, is illustrated. (See Study Question 1.7 for more information on such diagrams.) (a) Explain why the fraction of bicarbonate ion, HCO3, rises and then falls as the pH increases. (b) What is the composition of the solution when the pH is 6.0? When the pH is 10.0? (c) If you wanted to buffer a solution at a pH of 11.0, what should be the ratio of HCO3 to CO32?arrow_forward
- A student is given 0.930 g of an unknown acid, which can be either oxalic acid, H2C2O4, or citric acid, H3C6H5O7. To determine which acid she has, she titrates the unknown acid with 0.615 M NaOH. The equivalence point is reached when 33.6 mL are added. What is the unknown acid?arrow_forwardA solution of sodium cyanide, NaCN, has a pH of 12.10. How many grams of NaCN are in 425 mL of a solution with the same pH?arrow_forwardA 15.00 mL sample of a NaOH solution was titrated with a 0.1053 M H2SO4 solution. If 17.88 mL of H2SO4 was used to reach the equivalence point, what is the concentration of NaOH? 3.011 M O 1.502 M 0.02510 M 0.2510 Marrow_forward
- Calculate the molarity of an NaOH solution from the following titration data. Be sure the answer has the correct amount of significant figures. The chemical equation for this titration is as follows: NaOH + KHP ⟶ NaKP + H2O NaOH buret reading, inital: 15.27 mL NaOH buret reading, final: 8.32 mL Mass of KHP (204.22 g/mol): 1.1592 g Calculate the molarity of an NaOH solution from the following titration data. Be sure the answer has the correct amount of significant figures. The chemical equation for this titration is as follows: NaOH + KHP ⟶ NaKP + H2O NaOH buret reading, inital: 15.27 mL NaOH buret reading, final: 8.32 mL Mass of KHP (204.22 g/mol): 1.1592 garrow_forwardCalculate the concentration of an HCl solution if 100.0 mL of the HCI required 33.00 mL of 0.2000 M Mg(OH)₂ to reach the titration endpoint. Mg(OH)2 + 2 HCl → 2 H₂O + MgCl₂ There is enough information to calculate the moles of base but not the moles of acid. mol b. 0.1320 i. OH-1 p. CO3² W. PO4³ a. 0.1000 h. CaCO3(s) o. H₂PO4-¹ v. H₂CO3 bb. 3.300 x 10-² hh. 2.16 x 10-6 L)(- mol Mg(OH)3)(- mol HCI c. HX j. H30+1 q. HCO3-¹ x. HCzH3Oz dd. 2 jj. 0.2000 d. Al+3 k. SO4² r. H₂S CC. 3 ii. 1.60 x 10-5 e. CO₂ 1. Mg+2 S. HS-1 y. C₂H30₂-1 ee. 1 = mol HCI mol Mg(OH)₂ M HCI f. CaF2(aq) m. C-1 t. S-2 z. 1 x 10-14 ff. 0.099536 kk. 6.600 x 10-³ g. HF(aq) n. HPO 2 u. H₂O(lig) mol Mg(OH)3 aa. 1.32 x 102 gg. 3.95 x 10-3 mol HCIarrow_forwardIn the titration of 10.00 mL sample of vinegar solution with 0.35 M NaOH as titrant, the initial burette reading was 2.50 mL and the final burette reading was 45.30 mL. Calculate the mass percent of acetic acid (Molar mass = 60.05 g/mol) in the vinegar sample. (The density of the vinegar is 1.00 g/mL) % 5.0 .a O % 8.0 .b O % 6.0 .c O % 9.0 .d O % 7.0 .e Oarrow_forward
- 7.7 g of citric acid (MM = 192.1 g/mol) can be titrated with NaOH according to the following balanced chemical equation. H3C6H5O7 (aq) + NaOH(aq) → H2O(l) + Na H2C6H5O7(aq) what would the curve for the titration of the neutralization of the three hydrogens of this acid with NaOH look like?arrow_forwardIf it required 23.9 mL of 0.0150 M Ca(OH)2 to neutralize 25.0 mL of HNO3 , what was the initial concentration of the nitric acid solution?arrow_forwardHow many litres of 0.265 mol/L 5 points solution of phosphoric acid are necessary to completely neutralize 43.5 mL of a 0.325 mol/L solution of ammonia? * Your answer In a titration, a 45.0 mL sample of a 6 points hydrochloric acid solution is completely neutralized by 56.5 mL of a 0.05 mol/L sodium hydroxide solution. What was the pH of the acid before the titration? * Your answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY