
Electric Circuits Plus Mastering Engineering with Pearson eText 2.0 - Access Card Package (11th Edition) (What's New in Engineering)
11th Edition
ISBN: 9780134814117
Author: NILSSON, James W., Riedel, Susan
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 46P
To determine
Find the prototype transfer function of sixth-order high-pass Butterworth filter by using the transfer function of sixth-order Butterworth low pass filter (replacing s by
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1. For v(t)=2Σn-[8(t-n) + 28(t-n-0.4)], determine
(a) (10%) a figure of v(t);
(b) (5%) period To;
(c) (10%) Fourier series in Form III;
(d) (5%) Fourier transform;
(e) (5%) total power.
5. In the figure, v(t) = m(t)ej2nfct where the message signal is m(t): = Acos (2πfmt) and the carrier signal is
vc(t) = 2e−j(2nfct+0) where 0 is constant and 0 < fm
= cos (2π x 10t+ 0) where 0 is random with a probability density
E [0, 2π), and f(0) = 0 otherwise. v,(t) passes through a linear filter below.
2. Consider a random process v(t)
function f(0) = 1/(2) for
vi(t)-
H(f)
vo(t)
Determine
(a) (5%) vo(t);
(b) (10%) autocorrelation function of v(t);
(c) (8%) power spectral density function of vo(t);
(d) (7%) power of vo(t).
1
=
H(f)
2πf2+1
Chapter 15 Solutions
Electric Circuits Plus Mastering Engineering with Pearson eText 2.0 - Access Card Package (11th Edition) (What's New in Engineering)
Ch. 15.1 - Compute the values for R2 and C that yield a...Ch. 15.1 - Prob. 2APCh. 15.2 - Prob. 3APCh. 15.4 - Prob. 4APCh. 15.5 - Prob. 5APCh. 15.5 - Prob. 6APCh. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Design an op amp-based low-pass filter with a...Ch. 15 - Prob. 4P
Ch. 15 - Prob. 5PCh. 15 - Use the result of Problem 15.5 to find the...Ch. 15 - Repeat Problem 15.6, using the circuit shown in...Ch. 15 - Prob. 8PCh. 15 - Using only three components from Appendix H,...Ch. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Scale the inductor and capacitor in Fig. P9.66 so...Ch. 15 - Prob. 24PCh. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Design a bandpass filter, using a cascade...Ch. 15 - Prob. 31PCh. 15 - Show that the circuit in Fig. P15.32 behaves as a...Ch. 15 - For circuits of resistors, capacitors, Inductors,...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - Prob. 36PCh. 15 - Prob. 37PCh. 15 - Prob. 38PCh. 15 - Prob. 39PCh. 15 - Prob. 40PCh. 15 - Prob. 41PCh. 15 - Prob. 42PCh. 15 - Prob. 46PCh. 15 - Prob. 47PCh. 15 - The purpose of this problem is to guide you...Ch. 15 - Assume the circuit analyzed in Problem 15.48 is...Ch. 15 - The purpose of this problem is to develop the...Ch. 15 - Prob. 54PCh. 15 - Prob. 55PCh. 15 - Prob. 57PCh. 15 - Use 20 nF capacitors in the circuit in Fig. 15.27...Ch. 15 - Prob. 59PCh. 15 - Prob. 61PCh. 15 - Use the circuit in Fig. 15.33(a) to design a bass...Ch. 15 - Plot the maximum gain in decibels versus α when =...Ch. 15 - Prob. 64P
Knowledge Booster
Similar questions
- 4. Consider v(t) = 2 cos(t) + 5 sin(2t) passes through a linear system with frequence response H(f). 3 vi(t) Determine (a) (10%) vo(t); (b) (5%) power of vo(t). H(f) → vo(t) H(f)= 3, Ifls- 4π (0, otherwise.arrow_forward3. For the AM demodulator in figure, v(t) = m(t)cos (2πfet + 4) with a constant where the message signal is m(t) v(t)- =Acos (2πfmt) and carrier signal is v(t) = cos (2πfet) with fmarrow_forwardNot use ai pleasearrow_forward14arrow_forward5. In the figure, v(t) = m(t)ej2nfct where the message signal is m(t): = Acos (2πfmt) and the carrier signal is vc(t) = 2e−j(2nfct+0) where 0 is constant and 0 < fmarrow_forwardFor the following parallel resonant bandpass filter, find the exact center frequency of the pass band and the bandwidth. Given: • Vin = 20 V • L = 7.5 μH C = 270 pF - Rw = 5.1 Q R₁ = 750 0 Center Frequency: f= kHz Bandwidth: BW= kHz Maximum Output Voltage: Vout(max)= V Minimum Output Voltage: Vout(min) = V 270 pF HH C ww L Rw 5.1Q 7.5 HH Vin 20 V RLoad 750 Ω Voutarrow_forward3. For v(t) = 4Σn=-8(t-n- 0.5), (a) (10%) draw a figure of v(t); (b) (5%) determine period To; (c) (10%) determine Fourier transform form III; (d) (5%) determine power spectral density.arrow_forward1. For v(t) = 2 cos(2π x 20t) + 3 sin (2π x 10t), determine (a) (5%) period To; →→T= (b) (8%) Fourier transform form II; (c) (5%) power of the fundamental frequency component; (d) (2%) total power. s [ue] dtarrow_forwardDesign, simulate and implement an electropneumatic automation system with PLC for 2 cylinders (A and B), which when pressing the push button S1 performs the following pneumatic sequence: A- B- B+ A+ for 10 seconds. With the push button S2 the sequence can be stopped at any time.arrow_forward4. Consider v(t) = 2 cos(t) + 5 sin(2t) passes through a linear system with frequence response H(f). 3 vi(t) Determine (a) (10%) vo(t); (b) (5%) power of vo(t). H(f) → vo(t) H(f)= 3, Ifls- 4π (0, otherwise.arrow_forward2. (10%) In a 6G wireless communication system, the antenna length is L = 0.5 cm. Determine the carrier frequency fc according to the antenna length.arrow_forwardHANDWRITTEN SOLUTION REUIRED NOT USING CHATGPTarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill EducationFundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,