(a) What is the best coefficient of performance for a refrigerator that cools an environment at
Trending nowThis is a popular solution!
Chapter 15 Solutions
College Physics
Additional Science Textbook Solutions
Biological Science (6th Edition)
Chemistry: The Central Science (14th Edition)
Human Anatomy & Physiology (2nd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Concepts of Genetics (12th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- Consider the thermodynamic process, A->B->C->A shown above. The heat absorbed during A->B is 591J. If the change in internal energy during B->C is 4146J, What is the change in internal energy in SI units during C->A? Express only the number of your answer with 4 significant figures.arrow_forward(a) How much heat transfer occurs to the environment by an electrical power station that uses 1.25×1014 J of heat transfer into the engine with an efficiency of 42.0%? (b) What is the ratio of heat transfer to the environment to work output? (c) How much work is done?arrow_forwardA 4-ton air conditioner removes 5.06×107 J (48,000 British thermal units) from a cold environment in 1.00 h. (a) What energy input in joules is necessary to do this if the air conditioner has an energy efficiency rating ( EER ) of 12.0? (b) What is the cost of doing this if the work costs 10.0 cents per 3.60×106J (one kilowatt-hour)? (c) Discuss whether this cost seems realistic. Note that the energy efficiency rating ( EER ) of an air conditioner or refrigerator is defined to be the number of British thermal units of heat transfer from a cold environment per hour divided by the watts of power input.arrow_forward
- Answer the following ASAP: A gasoline engine has a power output of 200 kW. Its thermal efficiency is 35.0%. (a) How much heat must be supplied to the engine per second? (b) How much heat is discarded by the engine per second?arrow_forwardA large electrical power station generates 1050 MW of electricity with an efficiency of 37.0%. (a) Calculate the heat transfer (in J) to the power station, Q, in one day. (b) How much heat transfer Q. (in J) occurs to the environment in one day? (c) If the heat transfer in the cooling towers is from 35.0°C water into the local air mass, which increases in temperature from 18.0°C to 20.0°C, what is the total increase in entropy (in J/K) due to this heat transfer? J/K (d) How much energy (in J) becomes unavailable to do work because of this increase in entropy, assuming an 18.0°C lowest temperature? (Part of Q. could be utilized to operate heat engines or for simple space heating, but it rarely is.) to Additional Materials O Reading CS Scanned with CamScannerarrow_forward5. (a) How much heat transfer occurs to the environment by an electrical power station that uses1.25 × 10^14 J of heat transfer into the engine with an efficiency of 42.0%? (b) What is the ratioof heat transfer to the environment to work output? (c) How much work is done?arrow_forward
- A heat pump is a heating system that has an efficiency of about 150 %, that is,for every joule (J) the electrical energy consumed, 1.5 J of heat is produced. Yet according to the law from energy conservation, the energy efficiency of a device should never come into over 100%, since energy cannot be created or destroyed. So there is thermal energy that is transferred from the outside to the inside of the house. Explain why this phenomenon remains possible, even under 0 °C.arrow_forwardplease answer the following As a gasoline engine is running, an amount of gasoline containing 12,000 J of chemical potential energy is burned in 1 s. During that second, the engine does 4,000 J of work. What is the engine's efficiency (in percent)? The burning gasoline has a temperature of about 4,300°F (2,600 K). The waste heat from the engine flows into air at about 88°F (304 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures?arrow_forward(a) What is the best coefficient of performance for a refrigerator that cools an environment at -28.5°C and has heat transfer to another environment at 46.5°C? 3.262 (b) How much work in joules must be done for a heat transfer of 4186 kJ from the cold environment? 1283.26 (c) What is the cost (in cents) of doing this if the work costs 15.0 cents per 3.60 x 106 J (a kilowatt-hour)? 5.35 (d) How many k) of heat transfer occurs into the warm environment? 5469.26 kJ (e) Discuss what type of refrigerator might operate between these temperatures. The inside of the refrigerator (actually freezer) is at (-28.5 °C) so this probably is a commercial meat packing freezer. The exhaust is generally vented to the outside so as to not heat the building too much.arrow_forward
- As a gasoline engine is running, an amount of gasoline containing 16,000 J of chemical potential energy is burned in 1 s. During that second, the engine does 4,000 J of work. (a) What is the engine's efficiency (in percent)? % The burning gasoline has a temperature of about 4,700°F (2,900 K). The waste heat from the engine flows into air at about 86°F (303 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures? (b) %arrow_forwardAs a gasoline engine is running, an amount of gasoline containing 15,200 J of chemical potential energy is burned in 1 s. During that second, the engine does 3,800 J of work. (a) What is the engine's efficiency (in percent)? (b) The burning gasoline has a temperature of about 5,000°F (3,000 K). The waste heat from the engine flows into air at about 86°F (303 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures?arrow_forwardThis problem compares the energy output and heat transfer to the environment by two different types of nuclear power stations—one with the normal efficiency of 34.0%, and another with an improved efficiency of 40.0%. Suppose both have the same heat transfer into the engine in one day, 2.50×1014 J . (a) How much more electrical energy is produced by the more efficient power station? (b) How much less heat transfer occurs to the environment by the moreefficient power station? (One type of more efficient nuclear power station, the gas-cooled reactor, has not been reliable enough to be economically feasible in spite of its greater efficiency.)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning