College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 8PE
(a) How long will the energy in a 1470−kJ (350−kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficiency of 20.0% (such as in leisurely climbing stairs)? (b) Does the time found in part (a) imply that it is easy to consume more food energy than you can reasonably expect to work off with exercise?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(a) What is the average metabolic rate in watts of a man who metabolizes 10,500 kJ of food energy in one day? (b) What is the maximum amount of work in joules he can do without breaking down fat, assuming a maximum efficiency of 20.0%? (c) Compare his work output with the daily output of a 187-W (0.250-horsepower) motor.
A(n) 63-kg sprinter accelerates from rest to a speed of 11.0 m/s in 5.6 s.
(a) Calculate the mechanical work done by the sprinter during this time.
(b) Calculate the average power the sprinter must generate.
(c) If the sprinter converts food energy to mechanical energy with an efficiency of 25%, at what average rate is he burning Calories?
Cal/s
(d) What happens to the other 75% of the food energy being used?
7
Chapter 15 Solutions
College Physics
Ch. 15 - Describe the photo of the tea kettle at the...Ch. 15 - The first law of thermodynamics and the...Ch. 15 - Heat transfer Q and work done W are always energy...Ch. 15 - How do heat transfer and internal energy differ?...Ch. 15 - If you run down some stairs and stop, what happens...Ch. 15 - Give an explanation of how food energy (calories)...Ch. 15 - Identify the type of energy transferred to your...Ch. 15 - A great deal of effort time, and money has been...Ch. 15 - One method of converting heat transfer to doing...Ch. 15 - Would the previous question make any sense for an...
Ch. 15 - We ordinarily say that U=0 for an isothermal...Ch. 15 - The temperature of a rapidly expanding gas...Ch. 15 - Which cyclical process represented by the two...Ch. 15 - A real process may be nearly adiabatic if it...Ch. 15 - It is unlikely that a process can be isothermal...Ch. 15 - Imagine you are driving a car up Pike’s Peak in...Ch. 15 - Is a temperature difference necessary to operate a...Ch. 15 - Definitions of efficiency vary depending on how...Ch. 15 - Whyother than the fact that the second law of...Ch. 15 - Prob. 20CQCh. 15 - Can improved engineering and materials be employed...Ch. 15 - Does the second law of thermodynamics alter the...Ch. 15 - Explain why heat pumps do not work as well in very...Ch. 15 - In some Northern European nations, homes are being...Ch. 15 - Why do refrigerators, air conditioners, and heat...Ch. 15 - Grocery store managers contend that there is less...Ch. 15 - Can you cool a kitchen by leaving the refrigerator...Ch. 15 - A woman shuts her summer cottage up in September...Ch. 15 - Consider a system with a certain energy content,...Ch. 15 - Does a gas become more orderly when it liquefies?...Ch. 15 - Explain how water’s entropy can decrease when it...Ch. 15 - Is a uniform-temperature gas more or less orderly...Ch. 15 - Give an example of a spontaneous process in which...Ch. 15 - What is the change in entropy in an adiabatic...Ch. 15 - Does the entropy at a star increase or decrease as...Ch. 15 - Explain why a building made of bricks has smaller...Ch. 15 - Explain why a building made of bricks has smaller...Ch. 15 - What is the change in internal energy of a car if...Ch. 15 - How much heat transfer occurs from a system, if...Ch. 15 - A system does 1.80108J of work while 7.50108J of...Ch. 15 - What is the change in internal energy of a system...Ch. 15 - Suppose a woman does 500 J of work and 9500 J of...Ch. 15 - (a) How much food energy will a man metabolize in...Ch. 15 - (a) What is the average metabolic rate in watts of...Ch. 15 - (a) How long will the energy in a 1470kJ (350kcal)...Ch. 15 - (a) A woman climbing the Washington Monument...Ch. 15 - A car tire contains 0.0380m3 S of air at a...Ch. 15 - A heliumfilled toy balloon has a gauge pressure of...Ch. 15 - Steam to drive an old—fashioned steam locomotive...Ch. 15 - A hand—driven tire pump has a piston with a 2.50cm...Ch. 15 - Calculate the net work output of a heat engine...Ch. 15 - What is the net work output of a heat engine that...Ch. 15 - Unreasonable Results What is wrong with the claim...Ch. 15 - (a) A cyclical heat engine, operating between...Ch. 15 - Construct Your Own Problem Consider a car's...Ch. 15 - Construct Your Own Problem Consider a car trip...Ch. 15 - A certain heat engine does 10.0 kJ of work and...Ch. 15 - With 2.56106J of heat transfer into this engine, a...Ch. 15 - (a) What is the work output of a cyclical heat...Ch. 15 - (a) What is the eficiency of a cyclical heat...Ch. 15 - The engine of a large Ship does 2.00108J of work...Ch. 15 - (a) How much heat transfer occurs to the...Ch. 15 - Assume that the turbines at a coal—powered power...Ch. 15 - This problem compares the energy output and heat...Ch. 15 - A certain gasoline engine has an efficiency of...Ch. 15 - A gascooled nuclear reactor operates between hot...Ch. 15 - (a) What is the hot reservoir temperature of a...Ch. 15 - Steam locomotives have an efficiency of 17.0% and...Ch. 15 - Practical steam engines utilize 450C steam, which...Ch. 15 - A coalfired electrical power station has an...Ch. 15 - Would you be willing to financially back an...Ch. 15 - Unreasonable Results (a) Suppose you want to...Ch. 15 - Unreasonable Results Calculate the cold reservoir...Ch. 15 - What is the coefficient of performance of an ideal...Ch. 15 - Suppose you have an ideal refrigerator that cools...Ch. 15 - What is the best coefficient of performance...Ch. 15 - In a very mild winter climate, a heat pump has...Ch. 15 - (a) What is the best coefficient of performance...Ch. 15 - (a) What is the best coefficient of performance...Ch. 15 - Suppose you want to operate an ideal refrigerator...Ch. 15 - An ideal heat pump is being considered for use in...Ch. 15 - A 4ton air conditioner removes 5.60107J (48,000...Ch. 15 - Show that the coefficients of performance of...Ch. 15 - (a) On a winter day, a certain house loses...Ch. 15 - On a hot summer day, 4.00106J of heat transfer...Ch. 15 - A hot rock ejected from a volcano's lava fountain...Ch. 15 - When 1.60105J of heat transfer occurs into a meat...Ch. 15 - The Sun radiates energy at the rate of 3.801026W...Ch. 15 - (a) In reaching equilibrium, how much heat...Ch. 15 - What is the decrease in entropy of 25.0 g of water...Ch. 15 - Find the increase in entropy of 1.00 kg of liquid...Ch. 15 - A large electrical power station generates 1000 MW...Ch. 15 - (a) How much heat transfer occurs from 20.0 kg of...Ch. 15 - Using Table 15.4, verify the contention that if...Ch. 15 - What percent of the time will you get something in...Ch. 15 - (a) If tossing 100 coins, how many ways...Ch. 15 - (a) What is the change in entropy if you start...Ch. 15 - (a) What is the change in entropy if you start...Ch. 15 - Prob. 1TPCh. 15 - Prob. 2TPCh. 15 - Prob. 3TPCh. 15 - Prob. 4TPCh. 15 - Prob. 5TPCh. 15 - Prob. 6TPCh. 15 - Prob. 7TPCh. 15 - Prob. 8TPCh. 15 - Prob. 9TPCh. 15 - Prob. 10TPCh. 15 - Prob. 11TPCh. 15 - Prob. 12TPCh. 15 - Prob. 13TPCh. 15 - Prob. 14TPCh. 15 - Prob. 15TPCh. 15 - Prob. 16TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
A wild-type fruit fly (heterozygous for gray body color and led eyes) is mated Willi a black fruit fly wltli pu...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A coal power plant consumes 100,000 kg of coal per hour and produces 500 MW of power. If the heat of combustion of coal is 30 MJ/kg, what is the efficiency of the power plant?arrow_forwardShow that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forwardSuppose a woman does 450 J of work and 9300 J of heat transfer occurs into the environment in the process. (a) What is the decrease in her internal energy (in kcal), assuming no change in temperature or consumption of food? (That is, there is no other energy transfer.) (b) What is her efficiency (in percent)?arrow_forward
- As a gasoline engine is running, an amount of gasoline containing 16,000 J of chemical potential energy is burned in 1 s. During that second, the engine does 4,000 J of work. (a) What is the engine's efficiency (in percent)? % (b) The burning gasoline has a temperature of about 4,100°F (2,500 K). The waste heat from the engine flows into air at about 82°F (301 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures? %arrow_forwardA(n) 88-kg sprinter accelerates from rest to a speed of 11.0 m/s in 4.2 s. (a) Calculate the mechanical work done by the sprinter during this time. J (b) Calculate the average power the sprinter must generate. W (c) If the sprinter converts food energy to mechanical energy with an efficiency of 25%, at what average rate is he burning Calories? Cal/s (d) What happens to the other 75% of the food energy being used?arrow_forwardA(n) 82-kg sprinter accelerates from rest to a speed of 11.0 m/s in 4.1 s. (a) Calculate the mechanical work done by the sprinter during this time. J(b) Calculate the average power the sprinter must generate. W(c) If the sprinter converts food energy to mechanical energy with an efficiency of 25%, at what average rate is he burning Calories? Cal/s(d) What happens to the other 75% of the food energy being usedarrow_forward
- A(n) 65-kg sprinter accelerates from rest to a speed of 11.0 m/s in 4.0 s. (a) Calculate the mechanical work done by the sprinter during this time. (b) Calculate the average power the sprinter must generate. W (c) If the sprinter converts food energy to mechanical energy with an efficiency of 25%, at what average rate is he burning Calories? Cal/s (d) What happens to the other 75% of the food energy being used?arrow_forwardThe engine of a large ship does 2.00×108 J of work with an efficiency of 5.00%. (a) How much heat transfer occurs to the environment? (b) How many barrels of fuel are consumed, if each barrel produces 6.00×109 J of heat transfer when burned?arrow_forwardA 60-kg hiker wishes to climb to the summit of Mt. Ogden, an ascent of 5000 vertical feet (1500 m). a.) Assuming that she is 25% efficient at converting chemical energy from food into mechanical work, and that essentially all the mechanical work is used to climb vertically, roughly how many bowls of corn flakes (standard serving size 1 ounce, 100 kilocalories) should the hiker eat before setting out?(b) As the hiker climbs the mountain, three-quarters of the energy from the corn flakes is converted to thermal energy. Ifthere were no way to dissipate this energy, by how many degrees would her body temperature increase?(c) In fact, the extra energy does not warm the hiker's body significantly; instead, it goes (mostly) into evaporating water from her skin. How many liters of water should she drink during the hike to replace the lost fluids? (At 25°C, a reasonable temperature to assume, the latent heat of vaporization of water is 580 cal/g, 8% more than at 100°C.)arrow_forward
- A(n) 88-kg sprinter accelerates from rest to a speed of 11.0 m/s in 4.2 s. (a) Calculate the mechanical work done by the sprinter during this time. 5324 J (b) Calculate the average power the sprinter must generate. 1267.62 W (c) If the sprinter converts food energy to mechanical energy with an efficiency of 25%, at what average rate is he burning Calories? 5070.48 X Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Cal/sarrow_forwardAs a gasoline engine is running, an amount of gasoline containing 13,600 J of chemical potential energy is burned in 1 s. During that second, the engine does 3,400 J of work. (a) What is the engine's efficiency (in percent)? % (b) The burning gasoline has a temperature of about 4,100°F (2,500 K). The waste heat from the engine flows into air at about 90°F (305 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures? Need Help? % Read Itarrow_forwardA power plant has been proposed that would make use of the temperature gradient in the ocean. The system is to operate between 20.0°C (surface water temperature) and 5.00°C (water temperature at a depth of about 1 km). (a) What is the maximum efficiency of such a system? (b) If the useful power output of the plant is 75.0 MW, how much energy is absorbed per hour? (c) In view of your answer to part (a), do you think such a system is worthwhile (considering that there is no charge for fuel)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill