College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 16TP
To determine
The design of a macroscopic simulation using common material to represent one very high energy particle gradually transferring energy to lower energy particles and its equilibrium.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem Six. A 70 kg student in the figure balances a 1200 kg elephant
on a hydraulic lift with diameter 2.0 m that is filled with oil which has a
density of 900 kg/m³. How many 80 kg students would have to stand on
the first piston in order to raise the elephant by 2.55 m?
80 kg
1200 kg
17.)
(A) 5
(D) 8
(B) 6
(E) 9
(C) 7
Oil
2.0 m
5
In the accompanying figure, the rails, connecting end pieces, and rod all have a resistance per unit length
of 4.52/cm. The rod moves to the left at v = 5 m/s. If B = 0.3 T everywhere in the region, what is
the current in the circuit (a) when a = 6.5 cm? (b) when a = 4 cm?
Problem Twelve. An object consists of four
particles: m₁ =1.0kg, m₂ = 2.0kg, m3 = 3.0kg,
ma = 4.0kg. They are connected by rigid
massless rods to form a rectangle of edge lengths
2a and 2b, where a 7.0 m and b = 8.0 m. The
system rotates about the x-axis through the center
as shown.
=
Find the (x, y) coordinate of the center of
gravity of the object (in meters). Use the
geometrical center of the object as the
origin.
2a
13
2b
m
M2
Axis of rotation
20.) (A) (-3.2, -1.4) (B) (-3.2, 1.4)
(C) (5.2, -1.4)
(D) (-1.8,-1.4)
(E) (3.2,-5.2)
Find the moment of inertia of the object about the x-axis and y-axis that run through the geometrical
center of the object. Give an answer as (Ix, ly, I) in units of 10² kg-m².
21.) (A) (6.4, 4.9, 11)
(D) (9.8, 11, 12.8)
(B) (4.9, 6.4, 11)
(C) (11, 12.8, 9.8)
(E) (2.5, 10, 11)
anul babogaus al bos ano
002
maldor
If the object is spinning with angular velocity of 30 rpm around the axis of rotation shown in the
diagram, find the rotational kinetic energy. Give…
Chapter 15 Solutions
College Physics
Ch. 15 - Describe the photo of the tea kettle at the...Ch. 15 - The first law of thermodynamics and the...Ch. 15 - Heat transfer Q and work done W are always energy...Ch. 15 - How do heat transfer and internal energy differ?...Ch. 15 - If you run down some stairs and stop, what happens...Ch. 15 - Give an explanation of how food energy (calories)...Ch. 15 - Identify the type of energy transferred to your...Ch. 15 - A great deal of effort time, and money has been...Ch. 15 - One method of converting heat transfer to doing...Ch. 15 - Would the previous question make any sense for an...
Ch. 15 - We ordinarily say that U=0 for an isothermal...Ch. 15 - The temperature of a rapidly expanding gas...Ch. 15 - Which cyclical process represented by the two...Ch. 15 - A real process may be nearly adiabatic if it...Ch. 15 - It is unlikely that a process can be isothermal...Ch. 15 - Imagine you are driving a car up Pike’s Peak in...Ch. 15 - Is a temperature difference necessary to operate a...Ch. 15 - Definitions of efficiency vary depending on how...Ch. 15 - Whyother than the fact that the second law of...Ch. 15 - Prob. 20CQCh. 15 - Can improved engineering and materials be employed...Ch. 15 - Does the second law of thermodynamics alter the...Ch. 15 - Explain why heat pumps do not work as well in very...Ch. 15 - In some Northern European nations, homes are being...Ch. 15 - Why do refrigerators, air conditioners, and heat...Ch. 15 - Grocery store managers contend that there is less...Ch. 15 - Can you cool a kitchen by leaving the refrigerator...Ch. 15 - A woman shuts her summer cottage up in September...Ch. 15 - Consider a system with a certain energy content,...Ch. 15 - Does a gas become more orderly when it liquefies?...Ch. 15 - Explain how water’s entropy can decrease when it...Ch. 15 - Is a uniform-temperature gas more or less orderly...Ch. 15 - Give an example of a spontaneous process in which...Ch. 15 - What is the change in entropy in an adiabatic...Ch. 15 - Does the entropy at a star increase or decrease as...Ch. 15 - Explain why a building made of bricks has smaller...Ch. 15 - Explain why a building made of bricks has smaller...Ch. 15 - What is the change in internal energy of a car if...Ch. 15 - How much heat transfer occurs from a system, if...Ch. 15 - A system does 1.80108J of work while 7.50108J of...Ch. 15 - What is the change in internal energy of a system...Ch. 15 - Suppose a woman does 500 J of work and 9500 J of...Ch. 15 - (a) How much food energy will a man metabolize in...Ch. 15 - (a) What is the average metabolic rate in watts of...Ch. 15 - (a) How long will the energy in a 1470kJ (350kcal)...Ch. 15 - (a) A woman climbing the Washington Monument...Ch. 15 - A car tire contains 0.0380m3 S of air at a...Ch. 15 - A heliumfilled toy balloon has a gauge pressure of...Ch. 15 - Steam to drive an old—fashioned steam locomotive...Ch. 15 - A hand—driven tire pump has a piston with a 2.50cm...Ch. 15 - Calculate the net work output of a heat engine...Ch. 15 - What is the net work output of a heat engine that...Ch. 15 - Unreasonable Results What is wrong with the claim...Ch. 15 - (a) A cyclical heat engine, operating between...Ch. 15 - Construct Your Own Problem Consider a car's...Ch. 15 - Construct Your Own Problem Consider a car trip...Ch. 15 - A certain heat engine does 10.0 kJ of work and...Ch. 15 - With 2.56106J of heat transfer into this engine, a...Ch. 15 - (a) What is the work output of a cyclical heat...Ch. 15 - (a) What is the eficiency of a cyclical heat...Ch. 15 - The engine of a large Ship does 2.00108J of work...Ch. 15 - (a) How much heat transfer occurs to the...Ch. 15 - Assume that the turbines at a coal—powered power...Ch. 15 - This problem compares the energy output and heat...Ch. 15 - A certain gasoline engine has an efficiency of...Ch. 15 - A gascooled nuclear reactor operates between hot...Ch. 15 - (a) What is the hot reservoir temperature of a...Ch. 15 - Steam locomotives have an efficiency of 17.0% and...Ch. 15 - Practical steam engines utilize 450C steam, which...Ch. 15 - A coalfired electrical power station has an...Ch. 15 - Would you be willing to financially back an...Ch. 15 - Unreasonable Results (a) Suppose you want to...Ch. 15 - Unreasonable Results Calculate the cold reservoir...Ch. 15 - What is the coefficient of performance of an ideal...Ch. 15 - Suppose you have an ideal refrigerator that cools...Ch. 15 - What is the best coefficient of performance...Ch. 15 - In a very mild winter climate, a heat pump has...Ch. 15 - (a) What is the best coefficient of performance...Ch. 15 - (a) What is the best coefficient of performance...Ch. 15 - Suppose you want to operate an ideal refrigerator...Ch. 15 - An ideal heat pump is being considered for use in...Ch. 15 - A 4ton air conditioner removes 5.60107J (48,000...Ch. 15 - Show that the coefficients of performance of...Ch. 15 - (a) On a winter day, a certain house loses...Ch. 15 - On a hot summer day, 4.00106J of heat transfer...Ch. 15 - A hot rock ejected from a volcano's lava fountain...Ch. 15 - When 1.60105J of heat transfer occurs into a meat...Ch. 15 - The Sun radiates energy at the rate of 3.801026W...Ch. 15 - (a) In reaching equilibrium, how much heat...Ch. 15 - What is the decrease in entropy of 25.0 g of water...Ch. 15 - Find the increase in entropy of 1.00 kg of liquid...Ch. 15 - A large electrical power station generates 1000 MW...Ch. 15 - (a) How much heat transfer occurs from 20.0 kg of...Ch. 15 - Using Table 15.4, verify the contention that if...Ch. 15 - What percent of the time will you get something in...Ch. 15 - (a) If tossing 100 coins, how many ways...Ch. 15 - (a) What is the change in entropy if you start...Ch. 15 - (a) What is the change in entropy if you start...Ch. 15 - Prob. 1TPCh. 15 - Prob. 2TPCh. 15 - Prob. 3TPCh. 15 - Prob. 4TPCh. 15 - Prob. 5TPCh. 15 - Prob. 6TPCh. 15 - Prob. 7TPCh. 15 - Prob. 8TPCh. 15 - Prob. 9TPCh. 15 - Prob. 10TPCh. 15 - Prob. 11TPCh. 15 - Prob. 12TPCh. 15 - Prob. 13TPCh. 15 - Prob. 14TPCh. 15 - Prob. 15TPCh. 15 - Prob. 16TP
Knowledge Booster
Similar questions
- Problem Eleven. A hollow sphere with rotational inertia 1 = (2/3)MR2 is moving with speed v down an incline of angle 0 toward a spring with spring constant k. After traveling a distance d down the incline with no slipping, the sphere makes contact with the spring and compresses it a distance x before it comes momentarily to rest. Find the distance d in terms of the other quantities given. (21) 19.) (A) d=- 2Mg sin kx²-Mv² +x (B) d= 2Mg sin kx²+Mv² +x kx²-Mv² (C) d=- -x (D) d= 2Mg sin 2Mg cos kx²-Mv² 2Mg sin -x (E) d= kx²-Mv²arrow_forward1. A light bulb operates at a temperature of 4,300 K and has an emissivity of 0.600 and a surface area of 5.50 mm². How long would the light bulb have to shine on a 2.00 g piece of ice that is at -30.0°C in order to turn the ice into steam at 120°C? Assume all the energy radiated by the light bulb is absorbed by the ice while it becomes liquid and eventually steam. Give an answer in seconds. The following are specific heats for ice, water, and steam. Cice = 2,090 ***C kg kg."C Cwater = 4,186 C Csteam = 2,010 C kg"C The following are latent heats for water. L 3.33 x 10' J/kg Lv = 2.26 x 10° J/kg (A) 31.6 (B) 56.9 (C) 63.5 (D) 21.6 (E) 97.4 Suppose q; consists of three protons and 92 consists of two protons. Let q; be at the origin and q2 be located at d along the x-axis. See the diagram below. 91 92 Χ d 2. Where would the net electric potential due to these two charges be zero? (A) to the left of gi (B) to the right of 92 (D) to the right of 92, as well as to the left of gi (E) Between…arrow_forwardProblem Six: A homogeneous solid object floats in water with 60.0% of its volume below the surface. When placed in a second liquid, the same object floats with 90.0% of its volume below the surface. (The density of water is 1,000 kg/m³.) Determine the density of the object in kg/m³. 19.) (A) 430 (B) 280 Determine the specific gravity of the liquid. 20.) (A) 0.331 (B) 0.760 (C) 560 (D) 600 (E) 720 (C) 0.880 (D) 0.280 (E) 0.667arrow_forward
- A 1000-kg car traveling east at 30.0 m/s collides with a 950-kg car traveling north at 25.0 m/s. The cars stick together. Assume that any other unbalanced forces are negligible. What is the speed of the wreckage just after the collision? Please do on paper and show all equations and work done to get to the final answer. Along with any helpful diagrams if needed. These are a part of my review questions in the book but i keep getting different answers from what the book says, it is not a graded assignment***arrow_forwardWas not explained in my physics 2 lecture, and I'm confused!arrow_forwardA 75.0-kg person drops from rest a distance of 1.20 m to a platform of negligible mass supported by an ideal stiff spring of negligible mass. The platform drops 6.00 cm before the person comes to rest. What is the spring constant of the spring? Please do on paper and show all equations and work done to get to the final answer. Along with any helpful diagrams if needed. These are a part of my review questions in the book but i keep getting different answers from what the book says, it is not a graded assignment***arrow_forward
- Problem Ten. A uniform rod is suspended in mechanical equilibrium by two strings. If T₁ = 500 N, what is the weight of the rod (in N)? 18.) (A) 120 N (D) 600 N (B) 900 N (C) 500 N (E) 220 N T T Mg STAY Carrow_forwardIn the figure, two boxes, each of mass 35 kg, are at rest and connected as shown. The coefficient of kinetic friction between the inclined surface and the box is 0.38. Find the speed of the boxes just after they have moved 5.5 m. Please do on paper and show all formulas and work done to get final answer This is a review problem , I just keep getting the wrong thing from what the textbook says , so i would like to see the work donearrow_forwardA 64.0-kg skier starting from rest travels 200.0 m down a hill that has a 30.0° slope and a uniform surface. When the skier reaches the bottom of the hill, her speed is 30.0 m/s. How much work is done by friction as the skier comes down the hill? Please do on paper and show all the equations and work done to get to the final answer.arrow_forward
- A 550-kg car moving at 18.5 m/s hits from behind a 560-kg car moving at 11.8 m/s in the same direction. If the new speed of the heavier car is 16.0 m/s, what is the speed of the lighter car after the collision, assuming that any unbalanced forces on the system are negligibly small? Please do on paper and show all equations and work done to get to the final answer. Along with any helpful diagrams if needed. These are a part of my review questions in the book but i keep getting different answers from what the book says, it is not a graded assignment***arrow_forwardA 150kg piano rolls down a 30° incline. A man tries to keep it from accelerating, and manages to keep its acceleration to 1.4 m/s^2 . If the piano rolls 8 m, what is the net work, in joules, done on it by all the forces acting on it? Please do it on paper and show all formulas and work used to get the answerarrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. The answer is .028 T, I just need help understanding how to do it. Please show all steps.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning