College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 4TP
To determine
The total calories in the food item and the time taken to lose the energy obtained from that food item.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
College Physics
Ch. 15 - Describe the photo of the tea kettle at the...Ch. 15 - The first law of thermodynamics and the...Ch. 15 - Heat transfer Q and work done W are always energy...Ch. 15 - How do heat transfer and internal energy differ?...Ch. 15 - If you run down some stairs and stop, what happens...Ch. 15 - Give an explanation of how food energy (calories)...Ch. 15 - Identify the type of energy transferred to your...Ch. 15 - A great deal of effort time, and money has been...Ch. 15 - One method of converting heat transfer to doing...Ch. 15 - Would the previous question make any sense for an...
Ch. 15 - We ordinarily say that U=0 for an isothermal...Ch. 15 - The temperature of a rapidly expanding gas...Ch. 15 - Which cyclical process represented by the two...Ch. 15 - A real process may be nearly adiabatic if it...Ch. 15 - It is unlikely that a process can be isothermal...Ch. 15 - Imagine you are driving a car up Pike’s Peak in...Ch. 15 - Is a temperature difference necessary to operate a...Ch. 15 - Definitions of efficiency vary depending on how...Ch. 15 - Whyother than the fact that the second law of...Ch. 15 - Prob. 20CQCh. 15 - Can improved engineering and materials be employed...Ch. 15 - Does the second law of thermodynamics alter the...Ch. 15 - Explain why heat pumps do not work as well in very...Ch. 15 - In some Northern European nations, homes are being...Ch. 15 - Why do refrigerators, air conditioners, and heat...Ch. 15 - Grocery store managers contend that there is less...Ch. 15 - Can you cool a kitchen by leaving the refrigerator...Ch. 15 - A woman shuts her summer cottage up in September...Ch. 15 - Consider a system with a certain energy content,...Ch. 15 - Does a gas become more orderly when it liquefies?...Ch. 15 - Explain how water’s entropy can decrease when it...Ch. 15 - Is a uniform-temperature gas more or less orderly...Ch. 15 - Give an example of a spontaneous process in which...Ch. 15 - What is the change in entropy in an adiabatic...Ch. 15 - Does the entropy at a star increase or decrease as...Ch. 15 - Explain why a building made of bricks has smaller...Ch. 15 - Explain why a building made of bricks has smaller...Ch. 15 - What is the change in internal energy of a car if...Ch. 15 - How much heat transfer occurs from a system, if...Ch. 15 - A system does 1.80108J of work while 7.50108J of...Ch. 15 - What is the change in internal energy of a system...Ch. 15 - Suppose a woman does 500 J of work and 9500 J of...Ch. 15 - (a) How much food energy will a man metabolize in...Ch. 15 - (a) What is the average metabolic rate in watts of...Ch. 15 - (a) How long will the energy in a 1470kJ (350kcal)...Ch. 15 - (a) A woman climbing the Washington Monument...Ch. 15 - A car tire contains 0.0380m3 S of air at a...Ch. 15 - A heliumfilled toy balloon has a gauge pressure of...Ch. 15 - Steam to drive an old—fashioned steam locomotive...Ch. 15 - A hand—driven tire pump has a piston with a 2.50cm...Ch. 15 - Calculate the net work output of a heat engine...Ch. 15 - What is the net work output of a heat engine that...Ch. 15 - Unreasonable Results What is wrong with the claim...Ch. 15 - (a) A cyclical heat engine, operating between...Ch. 15 - Construct Your Own Problem Consider a car's...Ch. 15 - Construct Your Own Problem Consider a car trip...Ch. 15 - A certain heat engine does 10.0 kJ of work and...Ch. 15 - With 2.56106J of heat transfer into this engine, a...Ch. 15 - (a) What is the work output of a cyclical heat...Ch. 15 - (a) What is the eficiency of a cyclical heat...Ch. 15 - The engine of a large Ship does 2.00108J of work...Ch. 15 - (a) How much heat transfer occurs to the...Ch. 15 - Assume that the turbines at a coal—powered power...Ch. 15 - This problem compares the energy output and heat...Ch. 15 - A certain gasoline engine has an efficiency of...Ch. 15 - A gascooled nuclear reactor operates between hot...Ch. 15 - (a) What is the hot reservoir temperature of a...Ch. 15 - Steam locomotives have an efficiency of 17.0% and...Ch. 15 - Practical steam engines utilize 450C steam, which...Ch. 15 - A coalfired electrical power station has an...Ch. 15 - Would you be willing to financially back an...Ch. 15 - Unreasonable Results (a) Suppose you want to...Ch. 15 - Unreasonable Results Calculate the cold reservoir...Ch. 15 - What is the coefficient of performance of an ideal...Ch. 15 - Suppose you have an ideal refrigerator that cools...Ch. 15 - What is the best coefficient of performance...Ch. 15 - In a very mild winter climate, a heat pump has...Ch. 15 - (a) What is the best coefficient of performance...Ch. 15 - (a) What is the best coefficient of performance...Ch. 15 - Suppose you want to operate an ideal refrigerator...Ch. 15 - An ideal heat pump is being considered for use in...Ch. 15 - A 4ton air conditioner removes 5.60107J (48,000...Ch. 15 - Show that the coefficients of performance of...Ch. 15 - (a) On a winter day, a certain house loses...Ch. 15 - On a hot summer day, 4.00106J of heat transfer...Ch. 15 - A hot rock ejected from a volcano's lava fountain...Ch. 15 - When 1.60105J of heat transfer occurs into a meat...Ch. 15 - The Sun radiates energy at the rate of 3.801026W...Ch. 15 - (a) In reaching equilibrium, how much heat...Ch. 15 - What is the decrease in entropy of 25.0 g of water...Ch. 15 - Find the increase in entropy of 1.00 kg of liquid...Ch. 15 - A large electrical power station generates 1000 MW...Ch. 15 - (a) How much heat transfer occurs from 20.0 kg of...Ch. 15 - Using Table 15.4, verify the contention that if...Ch. 15 - What percent of the time will you get something in...Ch. 15 - (a) If tossing 100 coins, how many ways...Ch. 15 - (a) What is the change in entropy if you start...Ch. 15 - (a) What is the change in entropy if you start...Ch. 15 - Prob. 1TPCh. 15 - Prob. 2TPCh. 15 - Prob. 3TPCh. 15 - Prob. 4TPCh. 15 - Prob. 5TPCh. 15 - Prob. 6TPCh. 15 - Prob. 7TPCh. 15 - Prob. 8TPCh. 15 - Prob. 9TPCh. 15 - Prob. 10TPCh. 15 - Prob. 11TPCh. 15 - Prob. 12TPCh. 15 - Prob. 13TPCh. 15 - Prob. 14TPCh. 15 - Prob. 15TPCh. 15 - Prob. 16TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- This problem compares the energy output and heat transfer to the environment by two different types of nuclear power stationsone with the normal efficiency of 34.0%, and another with an improved efficiency of 40.0%. Suppose both have the same heat transfer into the engine in one day. 2.501014J. (a) How much more electrical energy is produced by the more efficient power station? (b) How much less heat transfer occurs to the environment by the more efficient power station? (One type of more ef?cient nuclear power station, the gas—cooled reactor, has not been reliable enough to be economically feasible in spite of its greater eficiency.)arrow_forward(a) How much food energy will a man metabolize in the process of doing 35.0 kJ of work with an efficiency of 5.00%? (b) How much heal transfer occurs to the environment to keep his temperature constant? Explicitly show how you follow the steps in the Problem—Solving Strategy for thermodynamics found in Problem-Solving Strategies for Thermodynamics.arrow_forwardA refrigerator has 18.0 kJ of work clone on it while 115kJ of energy is transferred from inside its interior. What is its coefficient of performance? (a) 3.40 (b) 2.80 (c) 8.90 (d) 6.40 (e) 5.20arrow_forward
- In performing 100.0 J of work, an engine discharges 50.0 J of heat. What is the efficiency of the engine?arrow_forwardA freezer has a coefficient of performance of 6.30. The freezer is advertised as using 457 kW-h/y. (a) On average, how much energy does the freezer use in a single day? (b) On average, how much thermal energy is removed from the freezer each day? (c) What maximum mass of water at 20.0C could the freezer freeze in a single day? Note: One kilowatt-hour (kW-h) is an amount of energy equal to operating a 1-kW appliance for one hour.arrow_forwardA coal power plant consumes 100,000 kg of coal per hour and produces 500 MW of power. If the heat of combustion of coal is 30 MJ/kg, what is the efficiency of the power plant?arrow_forward
- . As a gasoline engine is miming, an amount of gasoline containing 15,000 J of chemical potential energy is burned in 1 s. During that second, the engine does 3,000 J of work. (a) What is the engine's efficiency? (b) The burning gasoline has a temperature of about 4,000°F (2,500 K). The waste heat from the engine flows into air at about 80°F (300 K). What is the Carnot efficiency of a heat engine operating between these two temperatures?arrow_forwardExplain how water’s entropy can decrease when it freezes without violating the second law of thermodynamics. Specifically, explain what happens to the entropy of its surroundings.arrow_forwardA heat engine operates between two temperatures such that the working substance of the engine absorbs 5000 J of heat from the high-temperature bath and discharges 3000 J to the low-temperature bath. The rest of the energy is converted into mechanical energy of the turbine. Find (a) the amount of work produced by the engine and (b) the efficiency of the engine.arrow_forward
- (a) On a winter day, a certain house loses 5.00108J of heat to the outside (about 500,000 Btu). What is the total change in entropy due to this heat transfer alone, assuming an average indoor temperature of 21.0C and an average outdoor temperature of 5.00C ? (b) This large change in entropy implies a large amount of energy has become unavailable to do work. Where do we find more energy when such energy is lost to us?arrow_forwardIn a very mild winter climate, a heat pump has heat transfer from an environment at 5.00C to one at 35.0C. What is the best possible coefficient of performance for these temperatures? Explicitly show how you follow the steps in the Problem-Solving Strategies for Thermodynamics.arrow_forwardYou are working on a summer job at a company that designs non-traditional energy systems. The company is working on a proposed electric power plant that would make use of the temperature gradient in the ocean. The system includes a heat engine that would operate between 20.0C (surface-water temperature) and 5.00C (water temperature at a depth of about 1 km). (a) Your supervisor asks you to determine the maximum efficiency of such a system. (b) In addition, if the electric power output of the plant is 75.0 MW and it operates at the maximum theoretically possible efficiency, you must determine the rate at which energy is taken in from the warm reservoir. (c) From this information, if an electric bill for a typical home shows a use of 950 kWh per month, your supervisor wants to know how many homes can be provided with power from this energy system operating at its maximum efficiency. (d) As energy is drawn from the warm surface water to operate the engine, it is replaced by energy absorbed from sunlight on the surface. If the average intensity absorbed from sunlight is 650 W/m2 for 12 daylight hours on a clear day, you need to find the area of the ocean surface that is necessary for sunlight to replace the energy absorbed into the engine. (e) From this information, you need to determine if there is enough ocean surface on the Earth to use such engines to supply the electrical needs for all the homes associated with the Earths population. Assume the energy use for a home in part (c) is an average over the entire planet. (f) In view of your results in this problem, your supervisor has asked for your conclusion as to whether such a system is worthwhile to pursue. Note that the fuel (sunlight) is free.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY