Imagine you are driving a car up Pike’s Peak in Colorado. To raise a car weighing 1000 kilograms a distance of 100 meters would require about a million joules. You could raise a car 12.5 kilometers with the energy in a gallon of gas. Driving up Pike’s Peak (a mere 3000-meter climb) should consume a little less than a quart of gas. But other considerations have to be taken into account. Explain, in terms of efficiency, what factors may keep you from realizing your ideal energy use on this trip.
Trending nowThis is a popular solution!
Chapter 15 Solutions
College Physics
Additional Science Textbook Solutions
Chemistry: Structure and Properties (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Biology in Focus (2nd Edition)
Fundamentals of Anatomy & Physiology (11th Edition)
Biology: Life on Earth (11th Edition)
- A woman expends 95 kJ of energy in walking a kilometer. The energy is supplied by the metabolic breakdown of food intake and has a 35 percent efficiency. If the woman drives a car over the same distance, how much energy is used if the car gets 8.8 km per liter of gasoline (approximately 20 mi/gal)? The density of gasoline is 0.71 g/mL, and its enthalpy of combustion is 49 kJ/g. Enter your answer in scientific notation. Compare the efficiencies of the two processes. kJ (driving)/ kJ (walking)arrow_forwardThe metabolic power for typing is 150 W for Lili, not a lot as you know probably. How long does it take to burn off the energy in a slice of apple pie, which energy content is 1680 kJ (400 food calorie), in minutes? (Try to stay active, working/studying in front of a computer is not the best exercise you can do for your body.) Your answer needs to have 3 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forwardIf you drop a piece of ice on a hard surface, the energy of impact will melt some of the ice. The higher it drops, the more ice will melt upon impact. Find the height from which the a block of ice should ideally be dropped to completely melt if that falls without air drag. [Hint: Equate the joules of gravitational potential energy to the product of the mass of ice and its heat of fusion (in si units, 335,000 J/kg. Do you see why the answer doesn't depend on mass?] Express your answer to two significant figures and include the appropriate units. B: Does the answer depend on mass?arrow_forward
- At a certain location, the solar power per unit area reaching Earth's surface is 200 W/ m^2, averaged over a 24-hour day. If the average power requirement in your home is 3 kW and you can convert solar power to electric power with 10 % efficiency, how large a collector area will you need to meet all your household energy requirements from solar energy? (Will a collector fit in your yard or on your roof? ).arrow_forwardA hot water heater in a residential home runs for an average of 3.2 hours per day with a heat energy input of 3.7 kW. What would be the annual cost for hot water in this home using a gas hot water heater if the cost of natural gas is $0.33/m3? The gas water heater can get 23 MJ of energy from 1 m3 of natural gas. [round your final answer to zero decimal places]?arrow_forward(a) What is the average metabolic rate in watts of a man who metabolizes 10,500 kJ of food energy in one day? (b) What is the maximum amount of work in joules he can do without breaking down fat, assuming a maximum efficiency of 20.0%? (c) Compare his work output with the daily output of a 187-W (0.250-horsepower) motor.arrow_forward
- A 55-kg woman cheats on her diet and eats a 540-Calorie (540 kcal) jelly doughnut for breakfast. (a) How many joules of energy are the equivalent of woman climb to perform an amount of mechanical work equivalent to the food energy in one jelly doughnut? Assume the height of a single stair is 15 cm. (c) If the human body is only 25% efficient in converting chemical energy to mechanical energy, how many stairs must the woman climb to work offher breakfast?arrow_forwardA 60-kg hiker wishes to climb to the summit of Mt. Ogden, an ascent of 5000 vertical feet (1500 m). a.) Assuming that she is 25% efficient at converting chemical energy from food into mechanical work, and that essentially all the mechanical work is used to climb vertically, roughly how many bowls of corn flakes (standard serving size 1 ounce, 100 kilocalories) should the hiker eat before setting out?(b) As the hiker climbs the mountain, three-quarters of the energy from the corn flakes is converted to thermal energy. Ifthere were no way to dissipate this energy, by how many degrees would her body temperature increase?(c) In fact, the extra energy does not warm the hiker's body significantly; instead, it goes (mostly) into evaporating water from her skin. How many liters of water should she drink during the hike to replace the lost fluids? (At 25°C, a reasonable temperature to assume, the latent heat of vaporization of water is 580 cal/g, 8% more than at 100°C.)arrow_forwardSuppose that a 59 kg boy and a 48 kg girl rode a car. They a traveled a 9 km distance. In 5.4 s, their speedometer changed from 30 to 60 kph. After their trip, they consumed 3 L of fuel. What is the efficiency of the car if it has a mass of 3760 kg, density of fuel = 719.7 kg/m3, heat of combustion of fuel = 37.21 MJ/kg.arrow_forward
- A system's "entropy" is (a) the amount of work the system can do. (b) the amount of microscopic work the system can do. (c) the amount of force the system could exert. (d) the amount of thermal energy in the system. (e) the amount of microscopic disorganization in the system.arrow_forwardA 4-ton air conditioner removes 5.06×107 J (48,000 British thermal units) from a cold environment in 1.00 h. (a) What energy input in joules is necessary to do this if the air conditioner has an energy efficiency rating ( EER ) of 12.0? (b) What is the cost of doing this if the work costs 10.0 cents per 3.60×106J (one kilowatt-hour)? (c) Discuss whether this cost seems realistic. Note that the energy efficiency rating ( EER ) of an air conditioner or refrigerator is defined to be the number of British thermal units of heat transfer from a cold environment per hour divided by the watts of power input.arrow_forwardWhat is the efficiency of a heat engine that uses an input heat of 6.70 x 104 J and rejects 3.28 x 104 J of heat?(Express your answer in 2 decimal place, no unit required)arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning