Concept explainers
Review. Old Faithful Geyser in Yellowstone National Park erupts at approximately one-hour intervals, and the height of the water column reaches 40.0 m (Fig. P15.40). (a) Model the rising stream as a series of separate droplets. Analyze the free-fall motion of one of the droplets to determine the speed at which the water leaves the ground. (b) What If? Model the rising stream as an ideal fluid in streamline flow. Use Bernoulli’s equation to determine the speed of the water as it leaves ground level. (c) How does the answer from part (a) compare with the answer from part (b)? (d) What is the pressure (above atmospheric) in the heated underground chamber if its depth is 175 m? Assume the chamber is large compared with the geyser’s vent.
Figure P15.40
(a)
The speed at which the water leaves the ground by modelling the stream as a series of separate droplets.
Answer to Problem 40P
The speed at which the water leaves the ground by modelling the stream as a series of separate droplets is
Explanation of Solution
Consider the upward flight of a water-drop projectile from geyser vent to fountain top.
Take the upward direction to be
Write the equation of motion in the vertical direction.
Here,
At the maximum height the velocity of the water drop will be zero so that the value of
Substitute
Conclusion:
The value of
Substitute
Therefore, the speed at which the water leaves the ground by modelling the stream as a series of separate droplets is
(b)
The speed of the water as it leaves the ground by modelling the stream as an ideal fluid in streamline flow.
Answer to Problem 40P
The speed of the water as it leaves the ground by modelling the stream as an ideal fluid in streamline flow is
Explanation of Solution
Write the Bernoulli’s equation.
Here,
Air has very low density so that the pressure at both geyser vent and fountain-top will be atmospheric pressure.
Substitute
Conclusion:
Substitute
Therefore, the speed of the water as it leaves the ground by modelling the stream as an ideal fluid in streamline flow is
(c)
The comparison of answers of part (a) and part (b).
Answer to Problem 40P
The answers of part (a) and part (b) agree precisely.
Explanation of Solution
It is asked to find the speed with which the water leaves the ground. In part (a), the rising stream was modelled as free-fall motion of one of the droplets. The value of the speed found using this model is
In part (b), the rising stream was modelled as an ideal fluid in streamline flow. The value of the speed found using this model is also
Conclusion:
Thus, the answers of part (a) and part (b) agree precisely.
(c)
The pressure in the heated underground chamber.
Answer to Problem 40P
The pressure in the heated underground chamber is
Explanation of Solution
Take point 1 in the Bernoulli’s equation to be the chamber and the point 2 to be fountain-top.
The velocity of the water drop at both the points are
Substitute
Conclusion:
The density of water is
Substitute
Therefore, the pressure in the heated underground chamber is
Want to see more full solutions like this?
Chapter 15 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
Additional Science Textbook Solutions
General, Organic, and Biological Chemistry: Structures of Life (5th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Fundamentals Of Thermodynamics
Chemistry & Chemical Reactivity
Organic Chemistry
- suggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning