Introductory Chemistry: A Foundation
8th Edition
ISBN: 9781285199030
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 34QAP
34. For each of the following solutions, the number of moles of solute is given, followed by the total volume of the solution prepared. Calculate the molarity of each solution.
a. 0.754 mol KNO; 225 mL
b. 0.0105 in of CaCl; 10.2 mL
c. 3.15 mol NaCl; 5.00 L
d. 0.499 mol NaBr; 100. mL
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 15 Solutions
Introductory Chemistry: A Foundation
Ch. 15.3 - ercise 15.1 A 1 35-g sample of seawater is...Ch. 15.3 - Prob. 15.2SCCh. 15.4 - ercise 15.3 Calculate the molarity of a solution...Ch. 15.4 - ercise 15.4 Give the concentrations of the ions in...Ch. 15.4 - ercise 15.5 Calculate the number of moles of Cl...Ch. 15.4 - ercise 15.6 Formalin is an aqueous solution of...Ch. 15.5 - ercise 15.7 What volume of 12 M HCI must be taken...Ch. 15.6 - at if all ionic solids were soluble in water? How...Ch. 15.6 - Exercise 15.8 When aqueous solutions of Na2SO3 and...Ch. 15.7 - ercise 15.9 Calculate the volume of 0.10 M HNO3...
Ch. 15.8 - ercise 15.10 Calculate the normality of a solution...Ch. 15.8 - Prob. 15.11SCCh. 15 - ou have a solution of table sail in water. What...Ch. 15 - onsider a sugar solution (solution A) with...Ch. 15 - You need to make 150.0 mL of a 0.10 M NaCI...Ch. 15 - ou have two solutions containing solute A. To...Ch. 15 - m>5. Which of the following do you need to know to...Ch. 15 - onsider separate aqueous solutions of HCI and...Ch. 15 - Prob. 7ALQCh. 15 - an one solution have a greater concentration than...Ch. 15 - Prob. 9ALQCh. 15 - You have equal masses of different solutes...Ch. 15 - Which of the following solutions contains the...Ch. 15 - As with all quantitative problems in chemistry,...Ch. 15 - Prob. 13ALQCh. 15 - Prob. 14ALQCh. 15 - solution is a homogeneous mixture. Can you give an...Ch. 15 - ow do the properties of a nonhomogeneous...Ch. 15 - Prob. 3QAPCh. 15 - Prob. 4QAPCh. 15 - n Chapter 14. you learned that the bonding forces...Ch. 15 - n oil spill spreads out on the surface of water,...Ch. 15 - . The “Chemistry in Focus” segment Water, Water...Ch. 15 - Prob. 8QAPCh. 15 - Prob. 9QAPCh. 15 - Prob. 10QAPCh. 15 - A solution is a homogeneous mixture and, unlike a...Ch. 15 - Prob. 12QAPCh. 15 - How do we define the mass percent composition of a...Ch. 15 - Prob. 14QAPCh. 15 - Calculate the percent by mass of solute in each of...Ch. 15 - Calculate the percent by mass of solute in each of...Ch. 15 - Prob. 17QAPCh. 15 - Prob. 18QAPCh. 15 - A sample of an iron alloy contains 92.1 g Fe. 2.59...Ch. 15 - Consider the iron alloy described in Question 19....Ch. 15 - An aqueous solution is to be prepared that will be...Ch. 15 - Prob. 22QAPCh. 15 - A solution is to be prepared that will be 4.50% by...Ch. 15 - Prob. 24QAPCh. 15 - Prob. 25QAPCh. 15 - Hydrogen peroxide solutions sold in drugstores as...Ch. 15 - Prob. 27QAPCh. 15 - A solvent sold for use in the laboratory contains...Ch. 15 - Prob. 29QAPCh. 15 - Prob. 30QAPCh. 15 - What is a standard solution? Describe the steps...Ch. 15 - Prob. 32QAPCh. 15 - 33. For each of the following solutions, the...Ch. 15 - 34. For each of the following solutions, the...Ch. 15 - 35. For each of the following solutions, the mass...Ch. 15 - Prob. 36QAPCh. 15 - 37. A laboratory assistant needs to prepare 225 mL...Ch. 15 - Prob. 38QAPCh. 15 - 39. Standard solutions of calcium ion used to test...Ch. 15 - Prob. 40QAPCh. 15 - 41. If 42.5 g of NaOH is dissolved in water and...Ch. 15 - 42. Standard silver nitrate solutions are used in...Ch. 15 - Prob. 43QAPCh. 15 - Prob. 44QAPCh. 15 - Prob. 45QAPCh. 15 - Prob. 46QAPCh. 15 - Prob. 47QAPCh. 15 - 48. What mass of solute is present in 225 mL of...Ch. 15 - Prob. 49QAPCh. 15 - Prob. 50QAPCh. 15 - Prob. 51QAPCh. 15 - Strong acid solutions may have their concentration...Ch. 15 - Prob. 53QAPCh. 15 - Prob. 54QAPCh. 15 - Prob. 55QAPCh. 15 - Prob. 56QAPCh. 15 - Prob. 57QAPCh. 15 - Prob. 58QAPCh. 15 - Prob. 59QAPCh. 15 - 60. Suppose 325 in L of 0.150 M NaOH is needed for...Ch. 15 - 61. How much water must be added w 500. mL of...Ch. 15 - An experiment calls for 100. mL of 1.25 M HC1. All...Ch. 15 - Prob. 63QAPCh. 15 - 64. Generally only the carbonates of the Group I...Ch. 15 - 65. Many metal ions are precipitated from solution...Ch. 15 - 66. Calcium oxalate, CaCO4, is very insoluble in...Ch. 15 - 67. When aqueous solutions of lead(II) ion are...Ch. 15 - 68. Aluminum ion may be precipitated from aqueous...Ch. 15 - 69. What volume of 0.502 M NaOH solution would be...Ch. 15 - 70. What volume of a 0.500 M NaOH solution would...Ch. 15 - 71. A sample of sodium hydrogen carbonate solid...Ch. 15 - 72. The total acidity in water samples can be...Ch. 15 - Prob. 73QAPCh. 15 - Prob. 74QAPCh. 15 - Prob. 75QAPCh. 15 - Prob. 76QAPCh. 15 - 77. Explain why the equivalent weight of H2SO4 is...Ch. 15 - Prob. 78QAPCh. 15 - Prob. 79QAPCh. 15 - Prob. 80QAPCh. 15 - Prob. 81QAPCh. 15 - Prob. 82QAPCh. 15 - Prob. 83QAPCh. 15 - Prob. 84QAPCh. 15 - 85. How many milliliters of 0.50 N NaOH are...Ch. 15 - 86. What volume of 0.104 N H2SO4is required to...Ch. 15 - 87. What volume of 0.151 N NaOH is required to...Ch. 15 - Prob. 88QAPCh. 15 - 89. A mixture is prepared by mixing 50.0 g of...Ch. 15 - Prob. 90APCh. 15 - 91. Suppose 50.0 mL of 0.250 M CoCl2 solution is...Ch. 15 - Prob. 92APCh. 15 - 93. Calculate the mass of AgCl formed, and the...Ch. 15 - 94. Baking soda (sodium hydrogen carbonate....Ch. 15 - 95. Many metal ions form insoluble sulfide...Ch. 15 - Prob. 96APCh. 15 - Prob. 97APCh. 15 - Prob. 98APCh. 15 - Prob. 99APCh. 15 - Prob. 100APCh. 15 - Prob. 101APCh. 15 - You mix 225.0 mL of a 2.5 M HCl solution with...Ch. 15 - A solution is 0.1% by mass calcium chloride....Ch. 15 - Prob. 104APCh. 15 - Prob. 105APCh. 15 - A certain grade of steel is made by dissolving 5.0...Ch. 15 - Prob. 107APCh. 15 - Prob. 108APCh. 15 - Prob. 109APCh. 15 - Prob. 110APCh. 15 - How many moles of each ion are present in 11.7 mL...Ch. 15 - Prob. 112APCh. 15 - Prob. 113APCh. 15 - Prob. 114APCh. 15 - Concentrated hydrochloric acid is made by pumping...Ch. 15 - A large beaker contains 1.50 L of a 2.00 M...Ch. 15 - Prob. 117APCh. 15 - Prob. 118APCh. 15 - If 10. g of AgNO3 is available, what volume of...Ch. 15 - Prob. 120APCh. 15 - Calcium carbonate, CaCO3, can be obtained in a...Ch. 15 - Prob. 122APCh. 15 - How many milliliters of 18.0 M H2SO4 are required...Ch. 15 - Prob. 124APCh. 15 - When 10. L of water is added to 3.0 L of 6.0 M...Ch. 15 - You pour 150.0 mL of a 0.250 M lead(ll) nitrate...Ch. 15 - How many grams of Ba (NO3)2are required to...Ch. 15 - Prob. 128APCh. 15 - What volume of 0.250 M HCI is required to...Ch. 15 - Prob. 130APCh. 15 - Prob. 131APCh. 15 - Prob. 132APCh. 15 - How many milliliters of 0.105 M NaOH are required...Ch. 15 - Prob. 134APCh. 15 - Prob. 135APCh. 15 - Prob. 136APCh. 15 - Prob. 137CPCh. 15 - A solution is prepared by dissolving 0.6706 g of...Ch. 15 - What volume of 0.100 M NaOH is required to...Ch. 15 - Prob. 140CPCh. 15 - A 450.O-mL sample of a 0.257 M solution of silver...Ch. 15 - A 50.00-mL sample of aqueous Ca(OH)2 requires...Ch. 15 - When organic compounds containing sulfur are...Ch. 15 - Prob. 1CRCh. 15 - Prob. 2CRCh. 15 - Prob. 3CRCh. 15 - Prob. 4CRCh. 15 - Prob. 5CRCh. 15 - Prob. 6CRCh. 15 - Prob. 7CRCh. 15 - Prob. 8CRCh. 15 - Prob. 9CRCh. 15 - Prob. 10CRCh. 15 - Prob. 11CRCh. 15 - Without consulting your textbook, list and explain...Ch. 15 - What does “STP’ stand for? What conditions...Ch. 15 - Prob. 14CRCh. 15 - Prob. 15CRCh. 15 - Define the normal boiling point of water. Why does...Ch. 15 - Are changes in state physical or chemical changes?...Ch. 15 - Prob. 18CRCh. 15 - Prob. 19CRCh. 15 - Prob. 20CRCh. 15 - Define a crystalline solid. Describe in detail...Ch. 15 - Define the bonding that exists in metals and how...Ch. 15 - Prob. 23CRCh. 15 - Define a saturated solution. Does saturated mean...Ch. 15 - Prob. 25CRCh. 15 - When a solution is diluted by adding additional...Ch. 15 - Prob. 27CRCh. 15 - Prob. 28CRCh. 15 - Prob. 29CRCh. 15 - Prob. 30CRCh. 15 - Prob. 31CRCh. 15 - When calcium carbonate is heated strongly, it...Ch. 15 - If an electric current is passed through molten...Ch. 15 - Prob. 34CRCh. 15 - Prob. 35CRCh. 15 - Prob. 36CRCh. 15 - Prob. 37CRCh. 15 - Prob. 38CR
Additional Science Textbook Solutions
Find more solutions based on key concepts
Give the IUPAC name for each compound.
Organic Chemistry
On what molecule does the anticodon appear? Explain the role of this molecule in protein synthesis.
Human Physiology: An Integrated Approach (8th Edition)
Why are mutants used as test organisms in the Ames test?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
2. Why is it that the range of resting blood pressures of humans is best represented by a bell-shaped curve co...
Human Biology: Concepts and Current Issues (8th Edition)
Label each statement about the polynucleotide ATGGCG as true or false. The polynucleotide has six nucleotides. ...
General, Organic, and Biological Chemistry - 4th edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The units of parts per million (ppm) and parts per billion (ppb) are commonly used by environmental chemists. In general, 1 ppm means 1 part of solute for every 106 parts of solution. Mathematically, by mass: ppm=gsolutegsolution=mgsolutekgsolution In the case of very dilute aqueous solutions, a concentration of 1.0 ppm is equal to 1.0 g of solute per 1.0 mL, which equals 1.0 g solution. Parts per billion is defined in a similar fashion. Calculate the molarity of each of the following aqueous solutions. a. 5.0 ppb Hg in H2O b. 1.0 ppb CHCl3 in H2O c. 10.0 ppm As in H2O d. 0.10 ppm DDT (C14H9Cl5) in H2Oarrow_forwardWhen 10. L of water is added to 3.0 L of 6.0 M H2SO4, what is the molarity of the resulting solution? Assume the volumes are additive.arrow_forwardWhat is the difference between a solute and a solvent?arrow_forward
- Polychlorinated biphenyls (PCBs) have been used extensively as dielectric materials in electrical transformers. Because PCBs have been shown to be potentially harmful, analysis for their presence in the environment has become very important. PCBs are manufactured according to the following generic reaction: C12H10+nCl2C12H10nCln.+nHCl This reaction results in a mixture of PCB products. The mixture is analyzed by decomposing the PCBs and then precipitating the resulting Cl asAgCl. a. Develop a general equation that relates the average value of n to the mass of a given mixture of PCBs and the mass of AgCl produced. b. A 0.1947-g sample of a commercial PCB yielded 0.4791 g of AgCl. What is the average value of n for this sample?arrow_forwardA 2.5624-g sample of a pure solid alkali metal chloride is dissolved in water and treated with excess silver nitrate. The resulting precipitate, filtered and dried, weighs 3.03707 g. What was the percent by mass of chloride ion in the original compound? What is the identity of the salt?arrow_forwardWhen a solution is diluted by adding additional solvent, the concentration of solute changes hut the amount of solute present does not change. Explain. Suppose 250. mL of water is added to 125 mL of 0.55 1 M NaCl solution. Explain how you would calculate the concentration of the solution after dilution.arrow_forward
- Magnesium metal (a component of alloys used in aircraft and a reducing agent used in the production of uranium, titanium, and other active metals) is isolated from sea water by the following sequence of reactions: Mg2+(aq)+Ca(OH)2(aq)Mg(OH)2(s)+Ca2+(aq)Mg(OH)2(s)+2HCl(aq)MgCl2(s)+2H2O(l)MgCl2(l)electrolysisMg(s)+Cl2+Cl2(g) Sea water has a density of 1.026 g/cm3 and contains 1272 parts per million of magnesium a5 Mg2+(aq) by mass. What mass, in kilograms, of Ca(OH)2; is required to precipitate 99.9% of the magnesium in 1.00103 L of sea water?arrow_forwardA common method for determining how much chloride ion is present in a sample is to precipitate the chloride from an aqueous solution of the sample with silver nitrate solution and then to weigh the silver chloride that results. The balanced net ionic reaction is :math>Ag+(aq)+Cl(aq)AgCl(s) ppose a 5.45-g sample of pure sodium chloride is dissolved in water and is then treated with a solution containing 1.15 g of silver nitrate. Will this quantity of silver nitrate be capable of precipitating all the chloride ion from the sodium chloride sample?arrow_forwardA weighed sample of a metal is added to liquid bromine and allowed to react completely. The product substance is then separated from any leftover reactants and weighed. This experiment is repeated with several masses of the metal but with the same volume of bromine. This graph indicates the results. Explain why the graph has the shape that it does.arrow_forward
- You wish to prepare 1 L of a 0.02-M potassium iodate solution. You require that the final concentration be within 1% of 0.02 M and that the concentration must be known accurately to the fourth decimal place. How would you prepare this solution? Specify the glassware you would use, the accuracy needed for the balance, and the ranges of acceptable masses of KIO3 that can be used.arrow_forward39. Standard solutions of calcium ion used to test for water hardness are prepared by dissolving pure calcium carbonate. CaCO3, in dilute hydrochloric acid. A 1.745-g sample of CaCO3 is placed in a 250.O-mL volumetric flask and dissolved in HCI. Then the solution is diluted to the calibration mark of the volumetric flask. Calculate the resulting molarity of calcium ion.arrow_forwardWhat mass of HCl is contained in 45.0 mL of an aqueous HCl solution that has a density of 1.19 g cm-3 and contains 37.21% HCl by mass?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY