
Concept explainers
Which of the following solutions contains the greatest number of particles? Support your answer.
.0 mL of 0 10 M sodium chloride
.0 mL of 0.10 M calcium chloride
.0 mL of 0.10 M iron(III) chloride
.0 mL of 0.10 M potassium bromide
.0 mL of 0.10 M sucrose (table sugar)

Interpretation:
The solution containing the greatest number of particles is to be predicted.
Concept Introduction:
There are many ways to determine the concentration of the solution. One of the most used methods is molarity. Molarity may be defined as the number of moles of the solute in one liter of the whole solution. Thus, the molarity can be calculated as,
Answer to Problem 11ALQ
The correct option is (b).
Explanation of Solution
Reason for correct option:
(b) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
Reasons for incorrect options:
(a) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
(c) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
(d) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
(e) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
The total number of particles present in the solution is
Want to see more full solutions like this?
Chapter 15 Solutions
Introductory Chemistry: A Foundation
Additional Science Textbook Solutions
Organic Chemistry
Physical Universe
SEELEY'S ANATOMY+PHYSIOLOGY
Cosmic Perspective Fundamentals
General, Organic, and Biological Chemistry - 4th edition
Fundamentals of Anatomy & Physiology (11th Edition)
- What units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?arrow_forwardProvide the structure, circle or draw, of the monomeric unit found in the biological polymeric materials given below. HO OH amylose OH OH 행 3 HO cellulose OH OH OH Ho HOarrow_forwardWhat units (if any) does K have? Does K depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)? in calculating the response factorarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardDon't used Ai solution and don't used hand raitingarrow_forwardOA. For the structure shown, rank the bond lengths (labeled a, b and c) from shortest to longest. Place your answer in the box. Only the answer in the box will be graded. (2 points) H -CH3 THe b Нarrow_forward
- Don't used hand raitingarrow_forwardQuizzes - Gen Organic & Biological Che... ☆ myd21.lcc.edu + O G screenshot on mac - Google Search savings hulu youtube google disney+ HBO zlib Homework Hel...s | bartleby cell bio book Yuzu Reader: Chemistry G periodic table - Google Search b Home | bartleby 0:33:26 remaining CHEM 120 Chapter 5_Quiz 3 Page 1: 1 > 2 > 3 > 6 ¦ 5 > 4 > 7 ¦ 1 1 10 8 ¦ 9 a ¦ -- Quiz Information silicon-27 A doctor gives a patient 0.01 mC i of beta radiation. How many beta particles would the patient receive in I minute? (1 Ci = 3.7 x 10 10 d/s) Question 5 (1 point) Saved Listen 2.22 x 107 222 x 108 3.7 x 108 2.22 x 108 none of the above Question 6 (1 point) Listen The recommended dosage of 1-131 for a test is 4.2 μCi per kg of body mass. How many millicuries should be given to a 55 kg patient? (1 mCi = 1000 μСi)? 230 mCiarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardQ3: Arrange each group of compounds from fastest SN2 reaction rate to slowest SN2 reaction rate. CI Cl H3C-Cl CI a) A B C D Br Br b) A B C Br H3C-Br Darrow_forwardQ4: Rank the relative nucleophilicity of halide ions in water solution and DMF solution, respectively. F CI Br | Q5: Determine which of the substrates will and will not react with NaSCH3 in an SN2 reaction to have a reasonable yield of product. NH2 Br Br Br .OH Brarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning




