(a) Interpretation: The normality of the given solution is to be calculated. 0.250 M HCl . Concept Introduction: The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element. The number of moles is calculated by the formula, Moles = Mass g Molar mass The molarity is calculated by the formula, Molarity = Number of moles of solute Volume of solution L The normality of the solution is calculated by the formula, Normality = Molarity × Number of H + or OH − ions .
(a) Interpretation: The normality of the given solution is to be calculated. 0.250 M HCl . Concept Introduction: The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element. The number of moles is calculated by the formula, Moles = Mass g Molar mass The molarity is calculated by the formula, Molarity = Number of moles of solute Volume of solution L The normality of the solution is calculated by the formula, Normality = Molarity × Number of H + or OH − ions .
Solution Summary: The author explains that the atomic mass of an element is defined as the sum of protons and neutrons. The molarity of HCl solution is calculated by the formula.
The normality of the given solution is to be calculated.
0.250M
HCl.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
Moles=MassgMolarmass
The molarity is calculated by the formula,
Molarity=NumberofmolesofsoluteVolumeofsolutionL
The normality of the solution is calculated by the formula,
Normality=Molarity×NumberofH+orOH−ions.
Interpretation Introduction
(b)
Interpretation:
The normality of the given solution is to be calculated.
0.105M
H2SO4.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
Moles=MassgMolarmass
The molarity is calculated by the formula,
Molarity=NumberofmolesofsoluteVolumeofsolutionL
The normality of the solution is calculated by the formula,
Normality=Molarity×NumberofH+orOH−ions.
Interpretation Introduction
(c)
Interpretation:
The normality of the given solution is to be calculated.
5.3×10−2M
H3PO4.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
Moles=MassgMolarmass
The molarity is calculated by the formula,
Molarity=NumberofmolesofsoluteVolumeofsolutionL
The normality of the solution is calculated by the formula,
this is an organic chemistry question please answer accordindly!!
please post the solution draw the figures and post, answer the question in a very simple and straight forward manner thanks!!!!! please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures or diagrams, please draw them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!!
im reposting this kindly solve all parts and draw it not just word explanations!!
Please correct answer and don't used hand raiting
Curved arrows are used to illustrate the flow of electrons. Using the provided
starting and product structures, draw the curved electron-pushing arrows for
the following reaction or mechanistic step(s).
Be sure to account for all bond-breaking and bond-making steps.
Select to Edit Arrows
H
H
Select to Add Arrows
>
H
CFCI:
Select to Edit Arrows
H
Select to Edit Arrows
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell