Concept explainers
Complete the changes in concentrations for each of the following reactions:
(a)
(b)
(c)
(d)
(e)
(a)
Interpretation: The change in the concentration of products for the provided reaction should be written.
Concept introduction: Chemical reaction is defined as the reaction in which reactants (on the left side) are converted into products (on the right side).
Answer to Problem 1E
The changes in the concentration of each ion for the provide reaction is as follows:
Explanation of Solution
The change in concentration is positive for the formation of the product as it results in an increase in the concentration of products during the reaction, whereas the change in concentration is negative for the reactants as, during the reaction, the reactants are consumed in order to form the products.
Therefore, the change in the concentrations for the provided reaction is:
(b)
Interpretation: The change in the concentration of products for the provided reaction should be written.
Concept introduction: Chemical reaction is defined as the reaction in which reactants (on the left side) are converted into products (on the right side).
Answer to Problem 1E
The changes in the concentration of each ion for the provide reaction is as follows:
Explanation of Solution
The change in concentration is positive for the formation of the product as it results in an increase in the concentration of products during the reaction, whereas the change in concentration is negative for the reactants as, during the reaction, the reactants are consumed in order to form the products.
Therefore, the change in the concentrations for the provided reaction is
(c)
Interpretation: The change in the concentration of products for the provided reaction should be written.
Concept introduction: Chemical reaction is defined as the reaction in which reactants (on the left side) are converted into products (on the right side).
Answer to Problem 1E
The changes in the concentration of each ion for the provide reaction is as follows:
Explanation of Solution
The change in concentration is positive for the formation of the product as it results in an increase in the concentration of products during the reaction, whereas the change in concentration is negative for the reactants as, during the reaction, the reactants are consumed in order to form the products.
In the provided reaction, the change in concentration of hydroxide ion is double hence its change is 2x.
Therefore, the change in the concentrations for the provided reaction is
(d)
Interpretation: The change in the concentration of products for the provided reaction should be written.
Concept introduction: Chemical reaction is defined as the reaction in which reactants (on left side) are converted into products (on right side).
Answer to Problem 1E
The changes in the concentration of each ion for the provide reaction is as follows:
Explanation of Solution
The change in concentration is positive for the formation of product as it results in an increase in the concentration of products during the reaction, whereas the change in concentration is negative for the reactants as, during the reaction, the reactants are consumed in order to form the products.
In the provided reaction, the change in concentration of magnesium ion is triple and phosphate ion is double hence its change is 3x and 2x respectively
Therefore, the change in the concentrations for the provided reaction is
(e)
Interpretation: The change in the concentration of products for the provided reaction should be written.
Concept introduction: Chemical reaction is defined as the reaction in which reactants (on left side) are converted into products (on right side).
Answer to Problem 1E
The changes in the concentration of each ion for the provide reaction is as follows:
Explanation of Solution
The change in concentration is positive for the formation of product as it results in increase in the concentration of products during the reaction, whereas the change in concentration is negative for the reactants as, during the reaction, the reactants are consumed in order to form the products.
In the provided reaction, the change in concentration of calcium ion is penta time and phosphate ion is triple and hydroxide ion is mono hence its change is 5x, 3x, and x respectively
Therefore, the change in the concentrations for the provided reaction is
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry by OpenStax (2015-05-04)
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Microbiology with Diseases by Body System (5th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Chemistry: Structure and Properties (2nd Edition)
Microbiology: An Introduction
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forward
- Print Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning