Concept explainers
The indicator dinitrophenol is an acid with a Ka of
Trending nowThis is a popular solution!
Chapter 14 Solutions
Chemistry by OpenStax (2015-05-04)
Additional Science Textbook Solutions
College Physics
Introductory Chemistry (5th Edition) (Standalone Book)
General Chemistry: Principles and Modern Applications (11th Edition)
Inorganic Chemistry
Introductory Chemistry (6th Edition)
Organic Chemistry (9th Edition)
- Write the chemical equation and the expression for the equilibrium constant, and calculate Kb for the reaction of each of the following ions as a base. (a) sulfate ion (b) citrate ionarrow_forwardUsing the diagrams shown in Problem 10-117, which of the solutions would have the greatest buffer capacity, that is, greatest protection against pH change, when the following occurs? a. A strong acid is added to the solution. b. A strong base is added to the solution.arrow_forwardGiven the acid-base indicators in Question 37, select a suitable indicator for the following titrations. (a) sodium formate (NaCHO2) with HNO3 (b) hypochlorous acid with barium hydroxide (c) nitric acid with HI (d) hydrochloric acid with ammoniaarrow_forward
- Identify the buffer system(s)the conjugate acidbase pair(s)present in a solution that contains equal molar amounts of the following: a. HF, KC2H3O2, NaC2H3O2, and NaF b. HNO3, NaOH, H3PO4, and NaH2PO4arrow_forwardConsider all acid-base indicators discussed in this chapter. Which of these indicators would be suitable for the titration of each of these? (a) NaOH with HClO4 (b) acetic acid with KOH (c) NH3 solution with HBr (d) KOH with HNO3 Explain your choices.arrow_forwardMethyl orange, HMO, is a common acid-base indicator. In solution it ionizes according to the equation: HMOaqH+aq+MO-aqredyellow If methyl orange is added to distilled water, the solution turns yellow. If 1 drop or two of 6 M HCl is added to the yellow solution, it turns red. If to that solution one adds a few drops of 6 M NaOH, the color reverts to yellow. a. Why does adding 6 M HCl to the yellow solution of methyl orange tend to cause the color to change to red? Note that in solution HCl exists as H+ and Cl- ions. b. Why does adding 6 M NaOH to the red solution tend to make it turn back to yellow? Note that in solution NaOH exists as Na+ and OH- ions. How does increasing OH- shift Reaction 3 in the discussion section? How would the resulting change in H+ affect the dissociation reaction of HMO?arrow_forward
- Write an equation for each of the following buffering actions. a. the response of a HPO42/PO43 buffer to the addition of OH ions b. the response of a HF/F buffer to the addition of OH ions c. the response of a HCN/CN buffer to the addition of H3O+ ions d. the response of a H3PO4/H2PO4 buffer to the addition of H3O+ ionsarrow_forwardMalic acid is a weak diprotic organic acid with Ka1 = 4.0 104 and Ka2 = 9.0 105. a Letting the symbol H2A represent malic acid, write the chemical equations that represent Ka1 and Ka2. Write the chemical equation that represents Ka1 Ka2. b Qualitatively describe the relative concentrations of H2A, HA, A2, and H3O+ in a solution that is about one molar in malic acid. c Calculate the pH of a 0.0175 M malic acid solution and the equilibrium concentration of [H2A]. d What is the A2 concentrationin in solutions b and c?arrow_forwardSketch a titration curve for the titration of potassium hydroxide with HCl, both 0.100 M. Identify three regions in which a particular chemical species or system dominates the acid-base equilibria.arrow_forward
- Determine the dominant acid-base equilibrium that results when each of the following pairs of solutions is mixed. Indicate the equilibrium by writing 1 for a strong acid, 3 for a weak acid, 4 for an acidic buffer, 7 for a neutral solution, 10 for a basic buffer, 11 for a weak base, and 13 for a strong base. (a) 10.0 mL of 0.15 M NaOH + 15.0 mL of 0.10 M HNO3 (b) 25.0 mL of 0.10 M HCl + 10.0 mL of 0.25 M NH3 (c) 50.0 mL of 0.050 M NaOH + 50.0 mL of 0.10 M NH3 (d) 50.0 mL of 0.10 M NH3 + 50.0 mL of 0.05 M HClarrow_forwardWhat is an acidbase indicator? Define the equivalence (stoichiometric) point and the end point of a titration. Why should you choose an indicator so that the two points coincide? Do the pH values of the two points have to be within 0.01 pH unit of each other? Explain.arrow_forwardFor conjugate acidbase pairs, how are Ka and Kb related? Consider the reaction of acetic acid in water CH3CO2H(aq)+H2O(l)CH3CO2(aq)+H3O+(aq) where Ka = 1.8 105 a. Which two bases are competing for the proton? b. Which is the stronger base? c. In light of your answer to part b. why do we classify the acetate ion (CH3CO2) as a weak base? Use an appropriate reaction to justify your answer. In general, as base strength increases, conjugate acid strength decreases. Explain why the conjugate acid of the weak base NH3 is a weak acid. To summarize, the conjugate base of a weak acid is a weak base and the conjugate acid of a weak base is a weak acid (weak gives you weak). Assuming Ka for a monoprotic strong acid is 1 106, calculate Kb for the conjugate base of this strong acid. Why do conjugate bases of strong acids have no basic properties in water? List the conjugate bases of the six common strong acids. To tie it all together, some instructors have students think of Li+, K+, Rb+, Cs+, Ca2+, Sr2+, and Ba2+ as the conjugate acids of the strong bases LiOH, KOH. RbOH, CsOH, Ca(OH)2, Sr(OH)2, and Ba(OH)2. Although not technically correct, the conjugate acid strength of these cations is similar to the conjugate base strength of the strong acids. That is, these cations have no acidic properties in water; similarly, the conjugate bases of strong acids have no basic properties (strong gives you worthless). Fill in the blanks with the correct response. The conjugate base of a weak acid is a_____base. The conjugate acid of a weak base is a_____acid. The conjugate base of a strong acid is a_____base. The conjugate acid of a strong base is a_____ acid. (Hint: Weak gives you weak and strong gives you worthless.)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning