The calcium ions in human blood serum are necessary for coagulation (Figure 15.5). Potassium oxalate, K 2 C 2 O 4 , is used as an anticoagulant when a blood sample is drawn for laboratory tests because it removes the calcium as a precipitate of CaC 2 O 4 ⋅ H 2 O . It is necessary to remove all but 1.0% of the Ca 2 + in serum in order to prevent coagulation. If normal blood serum with a buffered pH of 7.40 contains 9.5 mg of Ca 2 + per 100 mL of serum, what mass of K 2 C 2 O 4 is required to prevent the coagulation of a 10 mL blood sample that is 55% serum by volume? (All volumes are accurate to two significant figures. Note that the volume of serum in a 10-mL blood sample is 5.5 mL. Assume that the K S p value for CaC 2 O 4 in serum is the same as in water.) Figure 15.5 Anticoagulants can be added to blood that will combine with the Ca 2+ ions in blood serum and prevent the blood from clotting. (credit: modification of work by Neeta Lind)
The calcium ions in human blood serum are necessary for coagulation (Figure 15.5). Potassium oxalate, K 2 C 2 O 4 , is used as an anticoagulant when a blood sample is drawn for laboratory tests because it removes the calcium as a precipitate of CaC 2 O 4 ⋅ H 2 O . It is necessary to remove all but 1.0% of the Ca 2 + in serum in order to prevent coagulation. If normal blood serum with a buffered pH of 7.40 contains 9.5 mg of Ca 2 + per 100 mL of serum, what mass of K 2 C 2 O 4 is required to prevent the coagulation of a 10 mL blood sample that is 55% serum by volume? (All volumes are accurate to two significant figures. Note that the volume of serum in a 10-mL blood sample is 5.5 mL. Assume that the K S p value for CaC 2 O 4 in serum is the same as in water.) Figure 15.5 Anticoagulants can be added to blood that will combine with the Ca 2+ ions in blood serum and prevent the blood from clotting. (credit: modification of work by Neeta Lind)
The calcium ions in human blood serum are necessary for coagulation (Figure 15.5). Potassium oxalate, K2C2O4, is used as an anticoagulant when a blood sample is drawn for laboratory tests because it removes the calcium as a precipitate of
CaC
2
O
4
⋅
H
2
O
. It is necessary to remove all but 1.0% of the Ca2+ in serum in order to prevent coagulation. If normal blood serum with a buffered pH of 7.40 contains 9.5 mg of Ca2+ per 100 mL of serum, what mass of K2C2O4 is required to prevent the coagulation of a 10 mL blood sample that is 55% serum by volume? (All volumes are accurate to two significant figures. Note that the volume of serum in a 10-mL blood sample is 5.5 mL. Assume that the KSp value for CaC2O4 in serum is the same as in water.)
Figure 15.5 Anticoagulants can be added to blood that will combine with the Ca2+ ions in blood serum and prevent the blood from clotting. (credit: modification of work by Neeta Lind)
If we assume a system with an anodic overpotential, the variation of n as a function
of current density:
1. at low fields is linear 2. at higher fields, it follows Tafel's law
Obtain the range of current densities for which the overpotential has the same value
when calculated for 1 and 2 cases (maximum relative difference of 5% compared to
the behavior for higher fields).
To which overpotential range does this correspond?
Data: i = 1.5 mA cm², T = 300°C, B = 0.64, R = 8.314 J K1 mol-1 and F = 96485 C mol-1.
Answer by equation please
Some of the theories used to describe interface structure can be distinguished by:1. the measured potential difference.2. the distribution of ions in solution.3. the calculation of charge density.4. the external Helmoltz plane.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell