Concept explainers
Review. A 65.0-kg bungee jumper steps off a bridge with a light bungee cord tied to her body and to the bridge. The outstretched length of the cord is 11.0 m. The jumper reaches the bottom of her motion 36.0 m below the bridge before bouncing back. We wish to find the time interval between her leaving the bridge and her arriving at the bottom of her motion. Her overall motion can be separated into an 11.0-m tree fall and a 25.0-m section of simple harmonic oscillation. (a) For the free-fall part, what is the appropriate analysis model to describe her motion? (b) For what time interval is she in free fall? (c) For the simple harmonic oscillation part of the plunge, is the system of the bungee jumper, the spring, and the Earth isolated or nonisolated? (d) From your response in part (c) find the spring constant of the bungee cord. (c) What is the location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper? (f) What is the angular frequency of the oscillation? (g) What time interval is required for the cord to stretch by 25.0 m? (h) What is the total time interval for the entire 36.0-m drop?
(a)
The appropriate analysis model of jumper’s motion for the free fall part.
Answer to Problem 15.30P
The jumper’s motion has the constant acceleration.
Explanation of Solution
A free falling object is an object that is falling under the sole influence of gravity.
Any object that is being acted upon only by the force of gravity is said to be in a state of free fall. The free fall phase follows the parabolic behavior. Since the only gravity acted on the free fall, the acceleration is constant.
Conclusion:
Therefore, the jumper’s motion has the constant acceleration.
(b)
The time required for free fall.
Answer to Problem 15.30P
The time required for free fall is
Explanation of Solution
The mass of bungee jumper is
The equation for the kinematic is,
Here,
Substitute
Conclusion:
Therefore, the time required for free fall is
(c)
Weather the system of the bungee jumper, the spring and the earth is isolated or non-isolated for simple harmonic oscillation.
Explanation of Solution
When a system is isolated, it means that it is separated from its environment in such a way that no energy flows on or out of the system. The non-isolated system interacts with its environment and exchanges the energy.
The energy of the system of the bungee jumper, the spring and the earth is exchanged only with each other not outside from the system. Since the earth and spring act on the jumper, the system is isolated.
Conclusion:
Therefore, the system the bungee jumper, the spring and the earth is isolated.
(d)
The spring constant of the bungee cord.
Answer to Problem 15.30P
The spring constant of the bungee cord is
Explanation of Solution
Write an expression of the law of conservation of the energy for the bungee jumper
Here,
Substitute
Conclusion:
Therefore, the spring constant of the bungee cord is
(e)
The location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper.
Answer to Problem 15.30P
The location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper is
Explanation of Solution
The equation for the equilibrium point from the lorded is,
Here,
The equilibrium point is calculated as,
Here,
Substitute
Substitute
The amplitude of the motion is,
Substitute
Conclusion:
Therefore, the location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper is
(f)
The angular frequency of the oscillation.
Answer to Problem 15.30P
The angular frequency of the oscillation is
Explanation of Solution
The formula to calculate angular frequency of the oscillation is,
Substitute
Conclusion:
Therefore, the angular frequency of the oscillation is
(g)
The time interval required for the cord to stretched by
Answer to Problem 15.30P
The time interval required for the cord to stretched by
Explanation of Solution
The expression for the position of a particle in simple harmonic motion is,
Substitute
Substitute
Conclusion:
Therefore, the time interval required for the cord to stretched by
(h)
The total time interval for the entire
Answer to Problem 15.30P
The total time interval for the entire
Explanation of Solution
The total time interval for the entire
Substitute
Conclusion:
Therefore, the total time interval for the entire
Want to see more full solutions like this?
Chapter 15 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Additional Science Textbook Solutions
Fundamentals of Physics Extended
HUMAN ANATOMY
Cosmic Perspective Fundamentals
Campbell Essential Biology (7th Edition)
Introductory Chemistry (6th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
- Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forwardNo chatgpt pls will upvotearrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.49 xm to the right of the 2.50 μC chargearrow_forward
- Find the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction 2500 x What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C 226 × How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis 9a 9b % 9 9darrow_forwardwould 0.215 be the answer for part b?arrow_forwardSuppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forward
- What functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forwardIf speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forwardWhat does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forward
- What is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.185 xm to the right of the 2.50 μC chargearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning