Concept explainers
A small object is attached to the end of a string to form a simple pendulum. The period of its harmonic motion is measured for small
(a)
The period of motion for each length of simple pendulum.
Answer to Problem 15.44P
The period of motion for the length
Explanation of Solution
Given info: The lengths of the simple pendulum are
For the
Here,
Thus, the period for the
For the
Here,
Thus, the period for the
For the
Here,
Thus, the period for the
Conclusion:
Therefore, the period of motion for the length
(b)
The mean value of
Answer to Problem 15.44P
The mean value of
Explanation of Solution
Given info: The lengths of the simple pendulum are
The period of the oscillation of the pendulum is,
Here,
Take square on the both sides and calculate the
Substitute
Thus, the mean value of
Substitute
Thus, the mean value of
Substitute
Thus, the mean value of
Conclusion:
Therefore, the mean value of
(c)
To draw: The graph of
Answer to Problem 15.44P
The graph of
Figure (1)
The value of the
Explanation of Solution
Given info: The lengths of the simple pendulum are
In the part (a), the periods of different given length of pendulum are calculated. Make a table of square of periods
|
|
|
|
|
|
|
|
The above table gives ordered pairs.
Take the ordered pairs from above given table and join them by a straight line and plot the graph of
Figure (1)
The Figure (1) shows the graph of
From the above graph, the slope of the line is,
Here,
Substitute
From the equation of the period of the pendulum,
The slope of
So,
(d)
The comparison of values of
Answer to Problem 15.44P
The value of
Explanation of Solution
Given info: The lengths of the simple pendulum are
From part (c) the value of
Both values of
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 15 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- 2.82 A ball is thrown straight up from the ground with speed Up. At the same instant, a second ball is dropped from rest from a height H, directly above the point where the first ball was thrown upward. There is no air resistance. (a) Find the time at which the two balls collide. (b) Find the value of H in terms of un, and g such that at the instant when the balls collide, the first ball is at the highest point of its motion.arrow_forwardThe small piston has an area A1=0.033 m2 and the large piston has an area A2= 4.0 m2. What force F2 will the large piston provide if the small piston is pushed down with a force of 15 Newtons with an answer in Newtons?arrow_forward2.23 BIO Automobile Airbags. The human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the ac- celeration is less than 250 m/s². If you are in an automobile accident with an initial speed of 105 km/h (65 mi/h) and are stopped by an air- bag that inflates from the dashboard, over what minimum distance must the airbag stop you for you to survive the crash?arrow_forward
- Please solve and answer these problems correctly.Thank you!!arrow_forward2.2. In an experiment, a shearwater (a seabird) was taken from its nest, flown 5150 km away, and released. The bird found its way back to its nest 13.5 days after release. If we place the origin at the nest and extend the +x-axis to the release point, what was the bird's average ve- locity in m/s (a) for the return flight and (b) for the whole episode, from leaving the nest to returning?arrow_forwardUse relevant diagrams where necessary and go through it in detailsarrow_forward
- Your blood pressure (usually given in units of "mm of Hg") is a result of the heart muscle pushing on your blood. The left side of the heart creates a pressure of 115 mm Hg by exerting a force directly on the blood over an effective area of 14.5 cm2. What force does it exert to accomplish this? (Give your answer as the number of Newtons and note that you will need to do some unit conversions.)arrow_forwardWhat is the absolute (total) pressure experienced by a diver at a depth of 17 meters below the surface of a lake? Assume that atmospheric pressure at the surface of the lake is 101,000 Pascals, g= 9.8 m/s2, and the density of the water in the lake is 997 kg/m3. Give your answer as the number of Pascals.arrow_forwardA particular solid cube has an edge of length 0.59 meters and is made of a material whose density is 3500 kg/m3. What is the mass of the cube? Give your answer as the number of kilograms.arrow_forward
- Solve and answer correctly please.Thank you!!arrow_forwardA cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?arrow_forwardTwo-point charges of 5.00 µC and -3.00 µC are placed 0.250 m apart.a) What is the electric force on each charge? Include strength and direction and a sketch.b) What would be the magnitude of the force if both charges are positive? How about the direction? c) What will happen to the electric force on each piece of charge if they are moved twice as far apart? (Give a numerical answer as well as an explanation.)arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning