Physics for Scientists and Engineers, Technology Update (No access codes included)
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 15.58AP

Review. This problem extends the reasoning of Problem 41 in Chapter 9. Two gliders are set in motion on an air track. Glider 1 has mass m1 = 0.240 kg and moves to the right with speed 0.740 m/s. It will have a rear-end collision with glider 2, of mass m2 = 0.360 kg, which initially moves to the right with speed 0.120 m/s. A light spring of force constant 45.0 N/m is attached to the back end of glider 2 as shown in Figure P9.41. When glider 1 touches the spring, superglue instantly and permanently makes it stick to its end of the spring. (a) Find the common speed the two gliders have when the spring is at maximum compression. (b) Find the maximum spring compression distance. The motion after the gliders become attached consists of a combination of (1) the constant-velocity motion of the center of mass of the two-glider system found in part (a) and (2) simple harmonic motion of the gliders relative to the center of mass. (c) Find the energy of the center-of-mass motion. (d) Find the energy of the oscillation.

Blurred answer
Students have asked these similar questions
Chapter 16: Problem 6:  A massless spring, with force constant k=181N/m, connects a wall and a block of wood. The system is initially at rest with the spring neither stretched nor compressed. The block has mass M=60.2g and is free to move without friction on a table. A gun is positioned to fire a bullet of mass m=5.36g into the block along the spring axis. After the gun is fired, the bullet gets embedded in the block, and the spring is compressed a maximum distance d=0.837m. a) In terms of the variables given in the problem statement, find an equation for the speed of the bullet, v, just before it hits the block.  b) What is the speed, in meters per second, of the bullet before it enters the block?  c) What is the frequency, in hertz, of the resulting periodic motion of the block/bullet and spring system?
Problem 16:   A massless spring (with force constant k = 182 N/m) connects a wall and a block of wood. The system is initially at rest, with the spring unstretched. The block has mass M = 50.1 g and is able to move without friction on a table. A gun is positioned to fire a bullet of mass m = 6.6 g into the block along the spring axis. After the gun is fired, the bullet gets embedded in the block, and the spring is compressed a maximum distance d = 0.97 m.  Part (b)  In meters per second, what is the speed of the bullet v before it enters the block?   Part (c)  What is the frequency f (in Hz) of the resulting periodic motion of the block/bullet and spring system?
A block of mass m2 = 10.0 kg, at rest on a horizontal surface that has negligible friction, is connected to a spring which is initially not stretched or compressed. The other end of the spring is fixed to a wall, and the spring constant is k = 90 N/m. Another block of mass m1 = 14.0 kg and speed v1 = 3.2 m/s collides with the 10.0 kg block. The blocks stick together, and compress the spring. What is the maximum compression of the spring?

Chapter 15 Solutions

Physics for Scientists and Engineers, Technology Update (No access codes included)

Ch. 15 - An object of mass 0.40 kg, hanging from a spring...Ch. 15 - A runaway railroad car, with mass 3.0 105 kg,...Ch. 15 - The position of an object moving with simple...Ch. 15 - If an object of mass m attached to a light spring...Ch. 15 - You stand on the end of a diving board and bounce...Ch. 15 - A mass-spring system moves with simple harmonic...Ch. 15 - A block with mass m = 0.1 kg oscillates with...Ch. 15 - For a simple harmonic oscillator, answer yes or no...Ch. 15 - The top end of a spring is held fixed. A block is...Ch. 15 - Which of the following statements is not true...Ch. 15 - A simple pendulum has a period of 2.5 s. (i) What...Ch. 15 - A simple pendulum is suspended from the ceiling of...Ch. 15 - A particle on a spring moves in simple harmonic...Ch. 15 - You are looking at a small, leafy tree. You do not...Ch. 15 - Prob. 15.2CQCh. 15 - If the coordinate of a particle varies as x = -A...Ch. 15 - A pendulum bob is made from a sphere filled with...Ch. 15 - Figure CQ15.5 shows graphs of the potential energy...Ch. 15 - A student thinks that any real vibration must be...Ch. 15 - The mechanical energy of an undamped block-spring...Ch. 15 - Is it possible to have damped oscillations when a...Ch. 15 - Will damped oscillations occur for any values of b...Ch. 15 - If a pendulum clock keeps perfect time al the base...Ch. 15 - Prob. 15.11CQCh. 15 - A simple pendulum can be modeled as exhibiting...Ch. 15 - Consider the simplified single-piston engine in...Ch. 15 - A 0.60-kg block attached to a spring with force...Ch. 15 - When a 4.25-kg object is placed on lop of a...Ch. 15 - A vertical spring stretches 3.9 cm when a 10-g...Ch. 15 - In an engine, a piston oscillates with simpler...Ch. 15 - The position of a particle is given by the...Ch. 15 - A piston in a gasoline engine is in simple...Ch. 15 - A 1.00-kg object is attached to a horizontal...Ch. 15 - A simple harmonic oscillator takes 12.0 s to...Ch. 15 - A 7.00-kg object is hung from the bottom end of a...Ch. 15 - At an outdoor market, a bunch of bananas attached...Ch. 15 - A vibration sensor, used in testing a washing...Ch. 15 - (a) A hanging spring stretches by 35.0 cm when an...Ch. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - A ball dropped from a height of 4.00 m makes an...Ch. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - A particle moves in simple harmonic motion with a...Ch. 15 - A 1.00-kg glider attached to a spring with a force...Ch. 15 - A 0.500-kg object attached to a spring with a...Ch. 15 - You attach an object to the bottom end of a...Ch. 15 - To test the resiliency of its bumper during...Ch. 15 - A 200-g block is attached to a horizontal spring...Ch. 15 - A block of unknown mass is attached to a spring...Ch. 15 - A block-spring system oscillates with an amplitude...Ch. 15 - A particle executes simple harmonic motion with an...Ch. 15 - The amplitude of a system moving in simple...Ch. 15 - A 50.0-g object connected to a spring with a force...Ch. 15 - A 2.00-kg object is attached to a spring and...Ch. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - Prob. 15.32PCh. 15 - While driving behind a car traveling at 3.00 m/s,...Ch. 15 - A seconds pendulum is one that moves through its...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - The angular position of a pendulum is represented...Ch. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - Prob. 15.41PCh. 15 - A very light rigid rod of length 0.500 m extends...Ch. 15 - Review. A simple pendulum is 5.00 m long. What is...Ch. 15 - A small object is attached to the end of a string...Ch. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - A pendulum with a length of 1.00 m is released...Ch. 15 - A 10.6-kg object oscillates at the end of a...Ch. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - A baby bounces up and down in her crib. Her mass...Ch. 15 - As you enter a fine restaurant, you realize that...Ch. 15 - A block weighing 40.0 N is suspended from a spring...Ch. 15 - A 2.00-kg object attached to a spring moves...Ch. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Damping is negligible for a 0.150-kg object...Ch. 15 - The mass of the deuterium molecule (D2) is twice...Ch. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Review. This problem extends the reasoning of...Ch. 15 - A small ball of mass M is attached to the end of a...Ch. 15 - Review. A rock rests on a concrete sidewalk. An...Ch. 15 - Four people, each with a mass of 72.4 kg, are in a...Ch. 15 - To account for the walking speed of a bipedal or...Ch. 15 - Prob. 15.63APCh. 15 - An object attached to a spring vibrates with...Ch. 15 - Review. A large block P attached to a light spring...Ch. 15 - Review. A large block P attached to a light spring...Ch. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - A block of mass m is connected to two springs of...Ch. 15 - A horizontal plank of mass 5.00 kg and length 2.00...Ch. 15 - A horizontal plank of mass m and length L is...Ch. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - A ball of mass m is connected to two rubber bands...Ch. 15 - Review. One end of a light spring with force...Ch. 15 - People who ride motorcycles and bicycles learn to...Ch. 15 - A simple pendulum with a length of 2.23 m and a...Ch. 15 - When a block of mass M, connected to the end of a...Ch. 15 - Review. A light balloon filled with helium of...Ch. 15 - Consider the damped oscillator illustrated in...Ch. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - Your thumb squeaks on a plate you have just...Ch. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Prob. 15.82APCh. 15 - Two identical steel balls, each of mass 67.4 g,...Ch. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 15 - Review. Why is the following situation impassible?...Ch. 15 - A block of mass M is connected to a spring of mass...Ch. 15 - Review. A system consists of a spring with force...Ch. 15 - A light, cubical container of volume a3 is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY