
Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 15.24QP
Interpretation Introduction
Interpretation:
To derived the partial pressure (Kp) of given the statement of equilibrium reaction.
Concept Introduction:
Equilibrium constant: The respective values of K depend on whether the solution being calculated for is using concentration (or) partial pressure. The gas equilibrium constant related to the equilibrium (K) and both are derived from the ideal gas.
Kp: The equilibrium constant calculated from the partial pressures of a reaction equation. It is used to express the relationship between product pressures and reactant pressures. It is unites number, although it relates the pressures.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Draw the Fischer projection of D-fructose.
Click and drag to start drawing a
structure.
Skip Part
Check
AP
14
tv
SC
F1
F2
80
F3
a
F4
!
2
#
3
CF
F5
75
Ax
MacBook Air
894
$
5olo
%
Λ
6 >
W
F6
K
F7
&
Consider this step in a radical reaction:
Y
What type of step is this? Check all that apply.
Draw the products of the step on the right-hand side of the drawing area
below. If more than one set of products is possible, draw any set.
Also, draw the mechanism arrows on the left-hand side of the drawing
area to show how this happens.
ionization
propagation
initialization
passivation
none of the above
22.16 The following groups are ortho-para directors.
(a)
-C=CH₂
H
(d)
-Br
(b)
-NH2
(c)
-OCHS
Draw a contributing structure for the resonance-stabilized cation formed during elec-
trophilic aromatic substitution that shows the role of each group in stabilizing the
intermediate by further delocalizing its positive charge.
22.17 Predict the major product or products from treatment of each compound with
Cl₁/FeCl₂-
OH
(b)
NO2
CHO
22.18 How do you account for the fact that phenyl acetate is less reactive toward electro-
philic aromatic substitution than anisole?
Phenyl acetate
Anisole
CH
(d)
Chapter 15 Solutions
Chemistry: Atoms First
Ch. 15.2 - Write reaction quotients for the following...Ch. 15.2 - Write the reaction quotient for each of the...Ch. 15.2 - Write the equation for the equilibrium that...Ch. 15.2 - In principle, in the reaction of A and B to form...Ch. 15.2 - Carbonyl chloride (COCl2), also called phosgene,...Ch. 15.2 - In an analysis of the following reaction at 100C....Ch. 15.2 - In another analysis at 100C involving the same...Ch. 15.2 - Consider the reaction 2AB. The diagram shown on...Ch. 15.2 - Prob. 15.2.1SRCh. 15.2 - Prob. 15.2.2SR
Ch. 15.3 - Write equilibrium expressions for each of the...Ch. 15.3 - Write equilibrium expressions for each of the...Ch. 15.3 - Which of the following equilibrium expressions...Ch. 15.3 - Consider the reaction A(s)+B(g)C(s). Which of the...Ch. 15.3 - The following reactions have the indicated...Ch. 15.3 - The following reactions have the indicated...Ch. 15.3 - Using the data from Practice Problem A, determine...Ch. 15.3 - Consider a chemical reaction represented by the...Ch. 15.3 - Write KP expressions for (a) PCl3(g) + Cl2(g) ...Ch. 15.3 - Write KP expressions for...Ch. 15.3 - Write the equation for the gaseous equilibrium...Ch. 15.3 - These diagrams represent closed systems at...Ch. 15.3 - The equilibrium constant, Kc, for the reaction...Ch. 15.3 - For the reaction N2(g)+3H2(g)2NH2(g) KC is 2.3 ...Ch. 15.3 - KP = 2.79 10-5 for the reaction in Practice...Ch. 15.3 - Consider the reaction 2A(l)2B(g) at room...Ch. 15.3 - Prob. 15.3.1SRCh. 15.3 - Prob. 15.3.2SRCh. 15.3 - Prob. 15.3.3SRCh. 15.3 - Prob. 15.3.4SRCh. 15.4 - At 375C, the equilibrium constant for the reaction...Ch. 15.4 - The equilibrium constant, Kc, for the formation of...Ch. 15.4 - Calculate KP for the formation of nitrosyl...Ch. 15.4 - Consider the reaction 2AB. The diagram shown on...Ch. 15.4 - The equilibrium constant, KP, for the reaction...Ch. 15.4 - G for the reaction H2(g)+I2(s)2HI(g) is 2.60...Ch. 15.4 - Prob. 8PPBCh. 15.4 - Prob. 8PPCCh. 15.4 - Using data from Appendix 2, calculate the...Ch. 15.4 - Prob. 9PPACh. 15.4 - Kf for the complex ion Ag(NH3)2+ is 1.5 107 at...Ch. 15.4 - Which of the following graphs [(i)(iv)] best shows...Ch. 15.4 - The equilibrium constant, Ksp, for the dissolution...Ch. 15.4 - Calculate G for the process:...Ch. 15.4 - Ksp for Co(OH)2 at 25C is 3.3 10-16 Using this and...Ch. 15.4 - Prob. 10PPCCh. 15.4 - Prob. 15.4.1SRCh. 15.4 - Prob. 15.4.2SRCh. 15.4 - Prob. 15.4.3SRCh. 15.5 - Kc for the reaction of hydrogen and iodine to...Ch. 15.5 - Calculate the equilibrium concentrations of H2,...Ch. 15.5 - Determine the initial concentration of HI if the...Ch. 15.5 - Consider the reaction A(g) + B(g) C(g). The...Ch. 15.5 - For the same reaction and temperature as in Worked...Ch. 15.5 - Prob. 12PPACh. 15.5 - Prob. 12PPBCh. 15.5 - Prob. 12PPCCh. 15.5 - At elevated temperatures, iodine molecules break...Ch. 15.5 - Aqueous hydrocyanic acid (HCN) ionizes according...Ch. 15.5 - Consider a weak acid, HA, that ionizes according...Ch. 15.5 - Prob. 13PPCCh. 15.5 - A mixture of 5.75 atm of H2 and 5.75 atm of I2 is...Ch. 15.5 - Prob. 14PPACh. 15.5 - Prob. 14PPBCh. 15.5 - Consider the reaction A(g)+B(g)C(s)+D(s). The...Ch. 15.5 - Prob. 15.5.1SRCh. 15.5 - Prob. 15.5.2SRCh. 15.5 - Prob. 15.5.3SRCh. 15.6 - Hydrogen sulfide (H2S) is a contaminant commonly...Ch. 15.6 - For each change indicated, determine whether the...Ch. 15.6 - What can be added to the equilibrium that will (a)...Ch. 15.6 - Consider the reaction A(g)+B(g)C(s)+D(s), of the...Ch. 15.6 - For each reaction, predict in what direction the...Ch. 15.6 - For each reaction, predict the direction of shift...Ch. 15.6 - For the following equilibrium, give an example of...Ch. 15.6 - Prob. 16PPCCh. 15.6 - Prob. 15.6.1SRCh. 15.6 - Prob. 15.6.2SRCh. 15.6 - Prob. 15.6.3SRCh. 15.6 - Prob. 15.6.4SRCh. 15 - Define equilibrium. Give two examples of a dynamic...Ch. 15 - Which of the following statements is collect about...Ch. 15 - Consider the reversible reaction A B. Explain how...Ch. 15 - What is the law of mass action?Ch. 15 - Briefly describe the importance of equilibrium in...Ch. 15 - Define reaction quotient. How does it differ from...Ch. 15 - Prob. 15.7QPCh. 15 - Write the equation for the reaction that...Ch. 15 - Prob. 15.9QPCh. 15 - Prob. 15.10QPCh. 15 - Prob. 15.11QPCh. 15 - The equilibrium constant for the reaction...Ch. 15 - Prob. 15.13QPCh. 15 - Prob. 15.14QPCh. 15 - Prob. 15.15QPCh. 15 - Prob. 15.16QPCh. 15 - Prob. 15.17QPCh. 15 - Write equilibrium constant expressions for Kc and...Ch. 15 - Write the equilibrium constant expressions for Kc...Ch. 15 - Prob. 15.20QPCh. 15 - Prob. 15.21QPCh. 15 - Prob. 15.22QPCh. 15 - Computational Problems 15.23 The equilibrium...Ch. 15 - Prob. 15.24QPCh. 15 - The equilibrium constant KP for the reaction is...Ch. 15 - Prob. 15.26QPCh. 15 - Prob. 15.27QPCh. 15 - Prob. 15.28QPCh. 15 - Prob. 15.29QPCh. 15 - The equilibrium constant Kp for foe reaction is...Ch. 15 - Ammonium carbamate (NH4CO2NH2) decomposes as...Ch. 15 - Prob. 15.32QPCh. 15 - Consider the equilibrium If nitrosyl bromide...Ch. 15 - Prob. 15.34QPCh. 15 - The following equilibrium constants have been...Ch. 15 - The following equilibrium constants were...Ch. 15 - At a certain temperature, the following reactions...Ch. 15 - Prob. 15.38QPCh. 15 - The equilibrium constant for the reaction A B is...Ch. 15 - Prob. 15.40QPCh. 15 - Explain why Equation 15.6 is of great importance...Ch. 15 - Fill in the missing entries in the following...Ch. 15 - Computational Problems 15.43 The aqueous reaction...Ch. 15 - For the autoionization of water at 25C,...Ch. 15 - Consider the following reaction at 25C....Ch. 15 - Prob. 15.46QPCh. 15 - (a) Calculate G and KP for the following...Ch. 15 - The equilibrium constant (KP) for the reaction...Ch. 15 - Consider the decomposition of calcium carbonate....Ch. 15 - The equilibrium constant KP for the reaction CO(g)...Ch. 15 - Prob. 15.51QPCh. 15 - Prob. 15.52QPCh. 15 - Prob. 15.53QPCh. 15 - Conceptual Problems 15.54 A and B react to form...Ch. 15 - If Kc. = 2 for the reaction A2 + B2 2AB at a...Ch. 15 - Prob. 15.1VCCh. 15 - Prob. 15.2VCCh. 15 - Prob. 15.3VCCh. 15 - Prob. 15.4VCCh. 15 - Review Questions Outline the steps for calculating...Ch. 15 - Prob. 15.57QPCh. 15 - Prob. 15.58QPCh. 15 - Prob. 15.59QPCh. 15 - The dissociation of molecular iodine into iodine...Ch. 15 - The equilibrium constant Kc for the decomposition...Ch. 15 - Consider the following equilibrium process at...Ch. 15 - Prob. 15.63QPCh. 15 - Prob. 15.64QPCh. 15 - Prob. 15.5VCCh. 15 - Prob. 15.6VCCh. 15 - Prob. 15.7VCCh. 15 - Prob. 15.8VCCh. 15 - Prob. 15.9VCCh. 15 - Prob. 15.10VCCh. 15 - Prob. 15.11VCCh. 15 - Prob. 15.12VCCh. 15 - Prob. 15.65QPCh. 15 - Prob. 15.66QPCh. 15 - Prob. 15.67QPCh. 15 - Conceptual Problems 15.68 Which of the following...Ch. 15 - For which of the following reactions will a change...Ch. 15 - Which of the following equilibria will shift to...Ch. 15 - Which of the following will cause the equilibrium...Ch. 15 - Consider the following equilibrium system...Ch. 15 - Heating solid sodium bicarbonate in a closed...Ch. 15 - Consider the following equilibrium systems....Ch. 15 - What effect does an increase in pressure have on...Ch. 15 - Prob. 15.76QPCh. 15 - Consider the following equilibrium process....Ch. 15 - Prob. 15.78QPCh. 15 - Consider the following equilibrium reaction in a...Ch. 15 - Consider the gas-phase reaction...Ch. 15 - Prob. 15.81QPCh. 15 - Prob. 15.82QPCh. 15 - Prob. 15.83QPCh. 15 - The simplified equation representing the binding...Ch. 15 - Prob. 15.85QPCh. 15 - ADDITIONAL PROBLEMS 15.86 Consider the following...Ch. 15 - The equilibrium constant Kp for the reaction...Ch. 15 - For a reaction with a negative G value, which of...Ch. 15 - Carbon monoxide (CO) and nitric oxide (NO) are...Ch. 15 - Consider the following reacting system....Ch. 15 - At a certain temperature and a total pressure of...Ch. 15 - The decomposition of ammonium hydrogen sulfide...Ch. 15 - Consider the reaction 2NO(g)+O2(g)2NO2(g) At 430C,...Ch. 15 - In the Mond process for the purification of...Ch. 15 - Consider the reaction N2(g)+O2(g)2NO(g) Given that...Ch. 15 - Prob. 15.96QPCh. 15 - A mixture of 0.47 mole of H2 and 3.59 moles of HCl...Ch. 15 - Prob. 15.98QPCh. 15 - The following reaction represents the removal of...Ch. 15 - Prob. 15.100QPCh. 15 - Prob. 15.101QPCh. 15 - Calculate the equilibrium pressure of CO2 due to...Ch. 15 - Prob. 15.103QPCh. 15 - Consider the gas-phase reaction between A2 (green)...Ch. 15 - Prob. 15.105QPCh. 15 - The following diagram represents a gas-phase...Ch. 15 - The formation of SO3 from SO2 and O2 is an...Ch. 15 - Calculate the pressure of O2 (in atm) over a...Ch. 15 - The following reaction was described as the cause...Ch. 15 - Prob. 15.110QPCh. 15 - Calculate G and Kp for the following processes at...Ch. 15 - Prob. 15.112QPCh. 15 - The equilibrium constant Kp for the following...Ch. 15 - Prob. 15.114QPCh. 15 - Prob. 15.115QPCh. 15 - Prob. 15.116QPCh. 15 - Prob. 15.117QPCh. 15 - Prob. 15.118QPCh. 15 - Prob. 15.119QPCh. 15 - Prob. 15.120QPCh. 15 - The equilibrium constant Kc for the reaction...Ch. 15 - For reactions earned out under standard-state...Ch. 15 - When a gas was heated under atmospheric...Ch. 15 - Prob. 15.124QPCh. 15 - The equilibrium constant Kc for the following...Ch. 15 - The equilibrium constant (KP for the formation of...Ch. 15 - Prob. 15.127QPCh. 15 - Prob. 15.128QPCh. 15 - Prob. 15.129QPCh. 15 - In the gas phase, nitrogen dioxide is actually a...Ch. 15 - A 2.50-mole sample of NOCl was initially in a...Ch. 15 - About 75% of hydrogen for industrial use is...Ch. 15 - Photosynthesis can be represented by...Ch. 15 - Consider the decomposition of ammonium chloride at...Ch. 15 - At 25C, the equilibrium partial pressures of NO2...Ch. 15 - In 1899 the German chemist Ludwig Mond developed a...Ch. 15 - Consider the equilibrium reaction described in...Ch. 15 - Consider the equilibrium system3AB. Sketch the...Ch. 15 - The vapor pressure of mercury is 0.0020 mmHg at...Ch. 15 - Large quantities of hydrogen are needed for the...Ch. 15 - Prob. 15.141QPCh. 15 - At 25C. a mixture of NO2 and N2O4 gases are m...Ch. 15 - Prob. 15.143QPCh. 15 - Heating copper (II) oxide at 400C does not produce...Ch. 15 - The equilibrium constant Kc for the reaction...Ch. 15 - The dependence of the equilibrium constant of a...Ch. 15 - Prob. 15.147QPCh. 15 - The following diagram shows the variation of the...Ch. 15 - The Kp for the reaction SO2Cl2(g)SO2(g)+Cl2(g) is...Ch. 15 - Derive the equation G=RTlnQK where Q is the...Ch. 15 - Prob. 15.151QPCh. 15 - Prob. 15.152QPCh. 15 - Prob. 15.153QPCh. 15 - Industrial production of ammonia from hydrogen and...Ch. 15 - For which of the following reactions is Kc equal...Ch. 15 - At present, the World Anti-Doping Agency has no...Ch. 15 - (a) Use the vant Hoff equation in Problem 15.146...Ch. 15 - The Ka for hydrocyanic acid (HCN) is 4.9 10 l0....Ch. 15 - Determine the concentrations of Pb2+ and I in a...Ch. 15 - Determine the Ka for a weak acid if a 0.10-M...Ch. 15 - Prob. 15.4KSP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid.arrow_forwardHelp me solve this problem. Thank you in advance.arrow_forward22.7 Predict the monoalkylated products of the following reactions with benzene. (a) AlCl3 Ya (b) AlCl3 (c) H3PO4 (d) 22.8 Think-Pair-Share AICI3 The reaction below is a common electrophilic aromatic substitution. SO3 H₂SO4 SO₂H (a) Draw the reaction mechanism for this reaction using HSO,+ as the electrophile. (b) Sketch the reaction coordinate diagram, where the product is lower in energy than the starting reactant. (c) Which step in the reaction mechanism is highest in energy? Explain. (d) Which of the following reaction conditions could be used in an electrophilic aro- matic substitution with benzene to provide substituted phenyl derivatives? (i) AICI3 HNO3 H₂SO4 K2Cr2O7 (iii) H₂SO4 (iv) H₂PO₁arrow_forward
- Is an acid-base reaction the only type of reaction that would cause leavening products to rise?arrow_forwardHelp me understand this! Thank you in advance.arrow_forward22.22 For each compound, indicate which group on the ring is more strongly activating and then draw a structural formula of the major product formed by nitration of the compound. Br CHO (a) CH3 (b) (c) CHO CH3 SO₂H (d) ☑ OCHS NO₂ (e) (f) CO₂H NHCOCH3 NHCOCH, (h) CHS 22.23 The following molecules each contain two aromatic rings. (b) 000-100- H3C (a) (c) Which ring in each undergoes electrophilic aromatic substitution more readily? Draw the major product formed on nitration.arrow_forward
- V Consider this step in a radical reaction: Br: ? What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. ⚫ionization termination initialization neutralization none of the abc Explanation Check 80 Ο F3 F1 F2 2 F4 01 % do5 $ 94 #3 X 5 C MacBook Air 25 F5 F6 66 ©2025 ˇ F7 29 & 7 8arrow_forwardShow how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid.arrow_forwardno aiarrow_forward
- Polymers may be composed of thousands of monomers. Draw three repeat units (trimer) of the polymer formed in this reaction. Assume there are hydrogen atoms there are hydrogen atoms on the two ends of the trimer. Ignore inorganic byproducts.arrow_forwardDraw a tetramer if this alternating copolymer pleasearrow_forwardDraw the monomers required to synthesize this condensation polymer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY