Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 15.23P
The water table at a site is at 5 m below the ground level, and it is required to excavate to this level. The soil profile consists of a thick bed of sand where the unit weight is γm = 17.0 kN/m3 above the water table and γsat = 20.0 kN/m3 below the water table. The friction angle of the sand is 37°. The wall of the excavation will be supported by cantilever sheet piles. How deep would you drive the sheet piles? Use the simplified analysis (Figure 15.37) with a factor of safety of 1.5 on the passive resistance. Determine the maximum bending moment in the sheet pile and the required section modulus for the sheet pile section (given an allowable stress of 190 MN/m2).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The excavation shown below will be made on the clay for the construction of a highway. Potential Slope stability analysis is required on the slip plane. The ground is silty clay and c '= 18 kPa,' '= 20o and water = 100 kPa. At point a If the shear stress is 60 kPa, calculate the safety coefficient for this point.
Q3. Two meters of compacted fill (y= 20 kN/m³) is placed over a large area (Figure 4). A
rectangular foundation of size 4 m x 5 m is constructed at the site with its base located
at the existing ground surface. GWT is found at a depth of 3 m below the existing
ground surface.
a). Calculate and plot the in-situ vertical effective stress profile to a depth of 16 m
below the existing ground surface prior to fill and footing placement. Use
points with z = +2, +1, 0, -1, -2, -3, -5, -10, -13, -16 m (with z measured from the
existing ground surface).
b). Calculate and plot the additional effective stress due to the fill to a depth of 16
m. Use the same points as in part a).
c). If the load applied on the foundation is 4 MN, calculate and plot the effective
stress increase due to the footing to a depth of 16 m. Use the 2:1 approximate
method and the same points as in part a).
Summarize your calculations in an Excel spreadsheet and present sample
calculations for z = 0, -3, -10 and -16 m (with…
An embankment consists of clay fill for which c′ = 25 kN/m2 and φ = 27° (from consolidated undrained tests with pore-pressure measurement). The average bulk unit-weight of the fill is 2 Mg/m3. Estimate the shear-strength in kPa of the material on a horizontal plane at a point 20 m below the surface of the embankment, if the pore pressure at this point is 180 kN/m2 as shown by a piezometer.
Chapter 15 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Ch. 15 - Prob. 15.1PCh. 15 - Prob. 15.2PCh. 15 - Prob. 15.3PCh. 15 - Prob. 15.4PCh. 15 - Prob. 15.5PCh. 15 - Prob. 15.6PCh. 15 - Prob. 15.7PCh. 15 - Prob. 15.8PCh. 15 - Prob. 15.9PCh. 15 - Prob. 15.10P
Ch. 15 - Prob. 15.11PCh. 15 - Prob. 15.12PCh. 15 - Prob. 15.13PCh. 15 - Prob. 15.14PCh. 15 - Prob. 15.15PCh. 15 - Refer to the braced cut in Figure 15.50, for which...Ch. 15 - For the braced cut described in Problem 15.16,...Ch. 15 - Refer to Figure 15.51 in which = 17.5 kN/m3, c =...Ch. 15 - Refer to Figure 15.27a. For the braced cut, H = 6...Ch. 15 - Prob. 15.20PCh. 15 - Determine the factor of safety against bottom...Ch. 15 - Prob. 15.22PCh. 15 - The water table at a site is at 5 m below the...Ch. 15 - Prob. 15.24PCh. 15 - Prob. 15.25CTPCh. 15 - Figure 15.53 below shows a cantilever sheet pile...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer of all partsarrow_forwardWhen a vertical face excavation was made in a clayey silt, having density of 20 kN/m³, it failed at a depth of excavation of 4 m. What is the cohesive strength (in kN/m²) of the soil, if its angle of internal friction was 30°?arrow_forwardOnly attempt if you are sure of correct answer.arrow_forward
- A 600mm diameter pile is embedded in 3 layers of dense sand at a depth of 17m. Nq = 86. The groundwater table is situated between Layers 2 and 3. The layers have the following properties: Layer 1: γ = 16.9 kN/m3. 3m thick. Layer 2: γ = 17.6 kN/m3. 5.5m thick. Layer 3: γsat = 19.65 kN/m3. K is 0.9 and tan α = 0.37. The factor of safety is 3.0. What is the skin friction resistance of the pile in kN? What is the skin friction resistance of the pile in kN? None of the choices 1684.170 1477.156 1257.150 1322.744 866.118 Please answer this asap. For upvote. Thank you very mucharrow_forwardA 600mm diameter pile is embedded in 3 layers of dense sand at a depth of 17m. Nq = 86. The groundwater table is situated between Layers 2 and 3. The layers have the following properties: Layer 1: γ = 16.9 kN/m3. 3m thick. Layer 2: γ = 17.6 kN/m3. 5.5m thick. Layer 3: γsat = 19.65 kN/m3. K is 0.9 and tan α = 0.37. The factor of safety is 3.0. What is the skin friction resistance of the pile in kN? None of the choices 1684.170 1477.156 1257.150 1322.744 866.118 Please answer this asap. For upvote. Thank you vey much.arrow_forwardA 2.5 m wide strip footing carrying a net wall load of 550 kN/m is placed at a depth of 1.5 m below the ground surface. The entire soil below the ground level is granular and the average tip resistance from a cone penetration test for each layer is given in table below. Estimate the settlement after 10 years using Schmertmann's method. The average unit weight of sand = 18 kN/m³. Depth (m) qe (MPa) 0-2 9 2-5 8 5-9 14 9-12 12 12-14 15arrow_forward
- 15.21 A cantilever sheet pile wall is required to temporarily support an embankment for an access road, as shown in Figure P15.21. Determine the depth of penetration of the wall into the silty clay soil and the maximum bend- ing moment. Select two methods from FMM, FSM, and NPPM, and compare the results. Groundwater is 10 m below the surface. 20 кра 2.5 m Coarse-grained soil % 27,17 kN/m² = Medium clay 719 kN/m³ %= 50 kPa =27° FIGURE P15.21arrow_forwardP-3 Refer to Figure, for which L, = 2.4 m, L2 = 4.6 m, y = 15.7 kN/m³, Ysat = 17.3 kN/m³, and o'=30°, and c= 35 kN/m². Assuming Sand c' = 0 C = Water table free earth support method: a. What is the theoretical depth of embedment, D? Sand Ysat c' = 0 b. What length of sheet piles is needed? c. Determine the theoretical maximum moment in the sheet pile. d. Choose a sheet pile, from next page, if the the steel pile has a oall = 172 MN/m². %3D Clay D C b'= 0arrow_forwardI am looking for the solution for question 9.5, thank youarrow_forward
- 9, = 10 kPa I EFine-grained soil Y= 17.2 kN/m, S = 0.8. = 27°, s = 55 kPa 1.5 m 1.0 m 8 = determine the depth of embedment of the cantilever sheet pile wall shown above.arrow_forwardProblem #1 The figure below shows a cantilever sheet-pile wall penetrating a granular soil. Here, L1 = 4 m, L2 = 8 m, unit weight above water table= 16.1 kN/m3, saturated unit weight = 5 18.2 kN/m3, and friction angle of sand = 32 degrees. a. What is the theoretical depth of embedment, D? b. For a 30% increase in D, what should be the total length of the sheet piles? c. Determine the theoretical maximum moment of the sheet pile. d. If the allowable flexural stress = 170 MPa, compute the required section modulus of the sheet pile.arrow_forwardProblem #1 The figure below shows a cantilever sheet-pile wall penetrating a granular soil. Here, L₁ = 4 m, L₂ = 8 m, unit weight above water table= 16.1 kN/m³, saturated unit weight = 5 18.2 kN/m³, and friction angle of sand = 32 degrees. a. What is the theoretical depth of embedment, D? b. For a 30% increase in D, what should be the total length of the sheet piles? c. Determine the theoretical maximum moment of the sheet pile. d. If the allowable flexural stress = 170 MPa, compute the required section modulus of the sheet pile. Water table Dredge line Sand Y <=0 Sand Ysat c'=0 Sand Ysat c'=0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
How to build angle braces; Author: Country Living With The Harnish's;https://www.youtube.com/watch?v=3cKselS6rxY;License: Standard Youtube License