(a)
Whether the statement “A key is provided at the base of a cantilever retaining wall to improve the stability with respect to overturning” is true or false.
(a)
Answer to Problem 15.1P
The given statement is
Explanation of Solution
Actually a key is provided to increase the passive resistance at the toe which will increase the factor of safety against sliding. Hence, the base key will improve the stability of wall with respect to sliding.
Therefore, the given statement is
(b)
Whether the statement “The earth pressure distribution beneath the base of the retaining wall is uniform” is true or false.
(b)
Answer to Problem 15.1P
The given statement is
Explanation of Solution
The distribution of earth pressure below the base slab is not uniform because,
- Different earth pressure exerts on the base slab.
- The base slab is not a homogeneous one (concrete has homogeneous property).
- The friction between soil and base slab can distribute the earth pressure that is non-uniform in nature.
Therefore, the given statement is
(c)
Whether the statement “The lateral earth pressures in active state are greater in loose sands than in dense sands” is true or false.
(c)
Answer to Problem 15.1P
The given statement is
Explanation of Solution
- Active lateral earth pressure is the tilting of wall away from the position.
- The chance of tilting is more in loose sands compared to dense sands. Hence, the lateral earth pressures in active state are greater in loose sands than in dense sands.
Therefore, the given statement is
(d)
Whether the statement “A base heave problem is more serious in soft clays than in stiff clays” is true or false.
(d)
Answer to Problem 15.1P
The given statement is
Explanation of Solution
- Braced cuts in clay may become unstable due to the formation of heaving at the bottom of the excavation.
- Heave is the upward movement of the ground due to the expansion of clay, which swells when wet.
- More expansion will lead to heave. The expansion of soft clay is more compared to stiff clay. Hence, the base heave problem is more serious in soft clays than in stiff clays.
Therefore, the given statement is
(e)
Whether the statement “Cantilever sheet piles have to be driven deeper in loose sands than in dense sands” is true or false.
(e)
Answer to Problem 15.1P
The given statement is
Explanation of Solution
- The reason to drive sheet piles at a certain depth below the bottom excavation is to reduce the lateral yielding of wall during the last stages of excavation.
- The lateral yielding in the loose sands is greater than the dense sands. Hence, the cantilever sheet piles have to be driven deeper in loose sands than in dense sands. The deeper piles will reduce the lateral yielding.
Therefore, the given statement is
Want to see more full solutions like this?
Chapter 15 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
- A soil profile is shown below. If a uniformly distributed load Aσ is applied at the ground surface, what is the settlement of the clay layer caused by primary consolidation if a. The clay is normally consolidated b. The clay is over-consolidated with σzc=200 kPa c. The clay is over-consolidated with σzc=150 kPa (Take Cr 0.03 and Cc = 0.15) Ao 100 kN/m² 2 m 4 m 3.5 m Sand Clay Xtry 14 kN/m³ Groundwater table Yat 18 kN/m³ Yat 19 kN/m³ Void ratio, e 0.8arrow_forwardAn existing 4-lane freeway (2 lanes in each direction) is to be expanded. The segment length is 2 mi (3.2 km); sustained grade: 4%; design volume of 3000 veh/h; trucks: 10%; . buses: 2%; RVs: 3%; PHF: 0.95; free-flow speed: 70 mi/h (112 km/h); right side lateral obstruction: 5 ft (1.5 m); design LOS: B. Determine number of additional lanes required in each directionarrow_forward8.2 onlyarrow_forward
- 5.6 A section of highway has the following flow- density relationship q = 50k - 0.156k2 [with q in veh/h and k in veh/mi]. What is the capacity of the highway section, the speed at capacity, and the density when the highway is at one-quarter of its capacity?arrow_forward8.20 Two routes connect a suburban area and a city, with route travel times (in minutes) given by the expressions t₁ = 6 + 8(x₁/c₁) and t₂ = 10 + 3(x2/c2), where the x's are expressed in thousands of vehicles per hour and the c's are the route capacities in thousands of vehicles per hour. Initially, the capacities of routes 1 and 2 are 4000 and 2000 veh/h, respectively. A reconstruction project on route 1 reduces the capacity to 3000 veh/h, but total traffic demand is unaffected. Observational studies note a 35.28-second increase in average travel time on route 1 and a 68.5% increase in flow on route 2 after reconstruction begins. User-equilibrium conditions exist before and during reconstruction. If both routes are always used, determine equilibrium flows and travel times before and after reconstruction begins.arrow_forward8.19 Three routes connect an origin and a destination with performance functions t₁ = 8+ 0.5x1, t2 = 1 + 2x2, and t3 = 3 + 0.75x3, with the x's expressed in thousands of vehicles per hour and the 's expressed in minutes. If the peak-hour traffic demand is 3400 vehicles, determine user-equilibrium traffic flows.arrow_forward
- 8.8 onlyarrow_forward8.4 Consider a Poisson regression model for the number of social/recreational trips generated during a peak-hour period that is estimated by (see Eq. 8.3) BZ = -0.75 +0.025(household size) + 0.008(annual household income, in thousands of dollars) + 0.10(number of nonworking household members). Suppose a household has five members (three of whom work) and an annual income of $100,000. What is the expected number of peak-hour social/recreational trips, and what is the probability that the household will not make a peak-hour social/recreational trip?arrow_forward8.15 An origin-destination pair is connected by a route with a performance function t₁ = 8+ x1, and another with a function t₂ = 1 + 2x2 (with x's in thousands of vehicles per hour and t's in minutes). If the total origin-destination flow is 4000 veh/h, determine user-equilibrium and system-optimal route travel times, total travel time (in vehicle minutes), and route flows.arrow_forward
- 8.13 Consider the situation described in Problem 8.11. If the total number of trips remains constant, determine the amount of amusement floor space that must be added to destination 2 to attract an additional 50 social/recreational trips.arrow_forward5- A basic freeway has 3 lanes in each direction and is on flat terrain. It has a jam density of 190 veh/km and a capacity of 4750 veh/h. The spot speed of 5 cars was collected at the midpoint of a 3.4 km segment of this freeway. Vehicle Speed (km/hr) 1 86 2 89 3 95 4 5 99 100 a) Calculate the space mean speed b) Calculate the free flow speed based on the given information c) A directional weekday peak-hour volume of 4640 vehicles is observed, with 1320 vehicles arriving in the most congested 15-min period. If the traffic stream has 12% large trucks and buses determine the level of service 6- What are the steps that a 4-step model used to predict travel demand on roads network consists of? Briefly describe was sort of information each step provides? 7- The bitumen is a conventional bituminous binder has a penetration index of -1 and = 65°c. T800 pen a) Determine the stiffness modulus of this bitumen if the operating conditions are as follows: temperature of 25°c and loading time of…arrow_forwardQ) Find the location of centroid for the shaded area shown in Figure below. 20mm 42mm 23mm 30mm 30mm 10mm Xarrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning