Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 15.15P
(a)
To determine
Find the factor of safety against overturning.
Find the factor of safety against sliding.
Find the factor of safety against bearing capacity failure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Figure 12.24, which shows a vertical retaining wall with a granular backfill, let H = 4 m, α = 17.5º, γ = 16.5 kN/m3, Φ' = 35º, and ẟ' = 10º. Based on Caquot and Kerisel’s solution, what would be the passive force per meter length of the wall?
A smooth rigid retaining wall of 6 m high carries a uniform surchargeload of 12 kN/m2. The backfill is clayey sand possessing the following properties. γ = 16.0 kN/m3 , φ = 25°, and c = 6.5 kN/m2 for a retaining wall system, the following data were available: (i) Height ofwall = 7 m. (ii) Properties of backfill: γd =16 kN/m3, φ = 35 ° (iii) Angleof wall friction, δ =20° (iv) Back of wall is inclined at 20° to the vertical(positive batter) (v) Backfill surface is sloping at 1:10. Find thefollowing(i) Active earth pressure(ii) Passive earth pressure
SOLVE USING RANKINES THEORY
Chapter 15 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Ch. 15 - Prob. 15.1PCh. 15 - Prob. 15.2PCh. 15 - Prob. 15.3PCh. 15 - Prob. 15.4PCh. 15 - Prob. 15.5PCh. 15 - Prob. 15.6PCh. 15 - Prob. 15.7PCh. 15 - Prob. 15.8PCh. 15 - Prob. 15.9PCh. 15 - Prob. 15.10P
Ch. 15 - Prob. 15.11PCh. 15 - Prob. 15.12PCh. 15 - Prob. 15.13PCh. 15 - Prob. 15.14PCh. 15 - Prob. 15.15PCh. 15 - Refer to the braced cut in Figure 15.50, for which...Ch. 15 - For the braced cut described in Problem 15.16,...Ch. 15 - Refer to Figure 15.51 in which = 17.5 kN/m3, c =...Ch. 15 - Refer to Figure 15.27a. For the braced cut, H = 6...Ch. 15 - Prob. 15.20PCh. 15 - Determine the factor of safety against bottom...Ch. 15 - Prob. 15.22PCh. 15 - The water table at a site is at 5 m below the...Ch. 15 - Prob. 15.24PCh. 15 - Prob. 15.25CTPCh. 15 - Figure 15.53 below shows a cantilever sheet pile...
Knowledge Booster
Similar questions
- 6. Details of a retaining wall are shown in the figure below. The unit weight of the wall material is 23 kN/m³. Assume a reduction factor K = 2/3 to consider the cohesion and friction angle at the base slab. Check the stability of the wall in terms of overturning and sliding failure. Use Rankine's theory to compute the active earth pressure. Soil 2 Y2 = 17 kN/m³ 6.5 m Im 2 m <-1.5m - Yc = 23 kN/m³ c₂ = 10 kN/m² 92 = 25° a = 15⁰ Soil 1 Y₁ = 16 kN/m³ c₁ = 0 kN/m² P₁ = 30°arrow_forwardSoil with an internal angle of friction of 40° and a cohesion of 10 kPa is excavated to a depth of 6 m prior to the placement of a retaining wall. The stability of a trial wedge with a horizontal angle of 25° is being investigated. The soil above the wedge weighs 12 kN/m of wall. 12 kN/m 6 m as=25° What is most nearly the available shearing resistance along the indicated slip plane? O A. 70 kN/m B. 140 kN/m O C. 150 kN/m OD. 180 kN/marrow_forwardPlease answer 8.3arrow_forward
- Problem 10 The backfill and foundation sand have unit weight of y = 135 pcf and Ø = 38. The backfill has a slope of 17 degrees and resultant force Ra acts parallel to the backfill slope as shown below. The friction angle between the base of the wall and the foundation sand is 8-2/30. The factor of safety against sliding and overturning, respectively, are most nearly (neglect passive pressure): W=5,531 lb/ft 17° Ra=2576 lb/ft 9.0 12.0' 17 5.54 2.5 1.5 A. 1.1 and 2.8 B. 1.3 and 3.8 C. 1.3 and 2.8 1.1 and 3.8 ABCD 5.0 1.5 4.0arrow_forwardPlease answer 13.21arrow_forward15. A backfill of a retaining wall consists of y=19 kN/m³ which is 6 m high. Find the lateral earth pressure per meter length. Given coefficient of earth pressure at rest is 0.5. a) 43 kN/m² b) 57 kN/m² c) 48 kN/m² d) 76 kN/m²arrow_forward
- 4arrow_forward6. Details of a retaining wall are shown in the figure below. The unit weight of the wall 2/3 to consider the cohesion and material is 23 kN/m³. Assume a reduction factor K friction angle at the base slab. Check the stability of the wall in terms of overturning and sliding failure. Use Rankine's theory to compute the active earth pressure. 6.5 m m Ye= 23 kN/m³3 4 m -1.5m Soil 2 Y2 = 17 kN/m³ c₂ = 10 kN/m² 42 = 25° a = 15° Soil 1 Y₁ = 16 kN/m³ c₁ = 0 kN/m² 4₁ = 30°arrow_forward6. Details of a retaining wall are shown in the figure below. The unit weight of the wall material is 23 kN/m³. Assume a reduction factor K = 2/3 to consider the cohesion and friction angle at the base slab. Check the stability of the wall in terms of overturning and sliding failure. Use Rankine's theory to compute the active earth pressure. 6.5 m tu 1 2 m Yc = 23 kN/m³ 4 m -1.5m - Soil 2 Y2 = 17 kN/m³ ₂ = 10 kN/m² P2 = 25° a = 15⁰ Soil 1 Y₁ = 16 kN/m³ c₁ = 0 kN/m² 4₁ = 30°arrow_forward
- Please solve under Geotechnology II Engineering.arrow_forwardA 6m retaining wall is supporting a soil with the following properties:Unit weight = 16 KN/cu.mAngle of internal friction = 25ºCohesion = 14 Kpaa. Assuming no tensile cracks occurs in the soil; determine its normal pressure acting at the back of the wall.b. If tensile crack occurs in the soil, calculate its active pressure acting on the wall.c. Find the location of tensile crack measured from the surface of horizontal backfill.arrow_forwardProblem Solving A gravity retaining wall is shown, solve the following using Rankine Active Pressure: a. Factor of safety against overturning. b. Factor of safety against sliding. c. Pressure on soil at toe and heel. Y = 18.5 kN/m $i = 32° e = 0 16.7 m 6 m Pa 75 2.167 m 1.5 m 0.27 m 0.6 m 1.53 m 0.8 m Y2= 18 kN/m 4 = 24° e = 30 kN/m? 0.8 m 0.3 m 3.5 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning