
(a)
Interpretation:
The rate law for the reaction should be determined by using concentration versus time.
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
(a)

Answer to Problem 136MP
Rate law for the reaction is:
Explanation of Solution
Given information:
Data is given as:
Time (s) | Experiment 1 | Experiment 2 |
0 | ||
10 | ||
20 | ||
30 | ? | |
40 |
In experiment 1, concentration of B is 10.0 M and in experiment 2, concentration of B is
20.0 M.
The order of reaction can be determined by the concentration and time data.
The general expression of rate law is expressed as:
Where, m and n are the experimentally determined values.
In both experiments, the concentration of B is more than the concentration of A, thus
In first experiment, 40 seconds are required to undergo one half-life of reactant A. In experiment 2, the half-life decreases by factor 4 as concentration of B doubles.
This observation implies that the reaction is second order with respect to B whereas the reaction is first order with respect to A as the
Thus, rate law for the reaction is expressed as:
(b)
Interpretation:
The value of rate constant including units should be calculated.
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
The proportionality coefficient which relates the rate of
(b)

Answer to Problem 136MP
Rate constant =
Explanation of Solution
Given information:
Data is given as:
Time (s) | Experiment 1 | Experiment 2 |
0 | ||
10 | ||
20 | ||
30 | ? | |
40 |
In experiment 1, concentration of B is 10.0 M and in experiment 2, concentration of B is
20.0 M.
In second experiment, the concentration decreases by half every ten seconds. As the reaction is first order with respect A, the below mathematical expression is used for determining value of rate of constant (k’).
Put the value of half-life,
Rate law for the given reaction is expressed as:
Since, concentration of B is more in comparison to A, thus, rate law is written as:
Where,
Put the values,
(c)
Interpretation:
The concentration of
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
The concentration of a reaction at any time is calculated by the values of concentration and time or by drawing the graph between concentration and time.
The rate constant expression for first order reaction is:
(c)

Answer to Problem 136MP
Concentration of A for first experiment at t = 30 s is
Explanation of Solution
Given information:
Data is given as:
Time (s) | Experiment 1 | Experiment 2 |
0 | ||
10 | ||
20 | ||
30 | ? | |
40 |
In experiment 1, concentration of B is 10.0 M and in experiment 2, concentration of B is
20.0 M.
Since, the reaction is first order with respect to A, thus, the rate constant expression is:
Where, k = rate constant
t = time
Co = Initial concentration
C = Concentration at given time.
Put the values from experiment 1,
Now, at t = 30 s
Put the values,
Thus, concentration of A for first experiment at t = 30 s is
(d)
Interpretation:
Among the given three mechanisms, the best mechanism for the given reaction should be determined. Also, reason should be explained for excluding any mechanism along with if all the three mechanism are equally good, reason should be explained.
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
(d)

Answer to Problem 136MP
The best mechanism is first mechanism.
Explanation of Solution
Given information:
The given reaction is:
For the given
Among the given mechanisms, first and third mechanisms give same rate law to the rate law of the given reaction. Thus, both first and third mechanism is possible. In case of second mechanism, rate law is not same to the rate law of given reaction.
Also, third mechanism is very rare to takes place. Thus, best mechanism is first mechanism.
Want to see more full solutions like this?
Chapter 15 Solutions
EBK CHEMICAL PRINCIPLES
- What is the stepwise mechanism for this reaction?arrow_forward32. Consider a two-state system in which the low energy level is 300 J mol 1 and the higher energy level is 800 J mol 1, and the temperature is 300 K. Find the population of each level. Hint: Pay attention to your units. A. What is the partition function for this system? B. What are the populations of each level? Now instead, consider a system with energy levels of 0 J mol C. Now what is the partition function? D. And what are the populations of the two levels? E. Finally, repeat the second calculation at 500 K. and 500 J mol 1 at 300 K. F. What do you notice about the populations as you increase the temperature? At what temperature would you expect the states to have equal populations?arrow_forward30. We will derive the forms of the molecular partition functions for atoms and molecules shortly in class, but the partition function that describes the translational and rotational motion of a homonuclear diatomic molecule is given by Itrans (V,T) = = 2πmkBT h² V grot (T) 4π²IKBT h² Where h is Planck's constant and I is molecular moment of inertia. The overall partition function is qmolec Qtrans qrot. Find the energy, enthalpy, entropy, and Helmholtz free energy for the translational and rotational modes of 1 mole of oxygen molecules and 1 mole of iodine molecules at 50 K and at 300 K and with a volume of 1 m³. Here is some useful data: Moment of inertia: I2 I 7.46 x 10- 45 kg m² 2 O2 I 1.91 x 101 -46 kg m²arrow_forward
- K for each reaction step. Be sure to account for all bond-breaking and bond-making steps. HI HaC Drawing Arrows! H3C OCH3 H 4 59°F Mostly sunny H CH3 HO O CH3 'C' CH3 Select to Add Arrows CH3 1 L H&C. OCH3 H H H H Select to Add Arrows Q Search Problem 30 of 20 H. H3C + :0: H CH3 CH3 20 H2C Undo Reset Done DELLarrow_forwardDraw the principal organic product of the following reaction.arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided structures, draw the curved arrows that epict the mechanistic steps for the proton transfer between a hydronium ion and a pi bond. Draw any missing organic structures in the empty boxes. Be sure to account for all lone-pairs and charges as well as bond-breaking and bond-making steps. 2 56°F Mostly cloudy F1 Drawing Arrows > Q Search F2 F3 F4 ▷11 H. H : CI: H + Undo Reset Done DELLarrow_forward
- Calculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbons. Draw out the benzene ring structure when doing itarrow_forward1) Calculate the longest and shortest wavelengths in the Lyman and Paschen series. 2) Calculate the ionization energy of He* and L2+ ions in their ground states. 3) Calculate the kinetic energy of the electron emitted upon irradiation of a H-atom in ground state by a 50-nm radiation.arrow_forwardCalculate the ionization energy of He+ and Li²+ ions in their ground states. Thannnxxxxx sirrr Ahehehehehejh27278283-4;*; shebehebbw $+$;$-;$-28283773838 hahhehdvaarrow_forward
- Plleeaasseee solllveeee question 3 andd thankss sirr, don't solve it by AI plleeaasseee don't use AIarrow_forwardCalculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbonsarrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





