EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 9781305856745
Author: DECOSTE
Publisher: CENGAGE LEARNING - CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 123AE
Interpretation Introduction
Interpretation:
The differential rate law, the integrated rate law, the value of the rate constant should be determined. First half-life and the second half-life should be calculated.
Concept Introduction:
Differential rate law gives an expression for the rate of concentration change while integrated rate law gives an expression of concentration versus time.
Integrated rate laws for zero, first and second order reactions are,
Zeroth order:
First order:
Second order:
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 15 Solutions
EBK CHEMICAL PRINCIPLES
Ch. 15 - Prob. 1DQCh. 15 - Prob. 2DQCh. 15 - a graph of [A] versus time for zero-, first-, and...Ch. 15 - Prob. 4DQCh. 15 - Prob. 5DQCh. 15 - Prob. 6DQCh. 15 - Prob. 7DQCh. 15 - Prob. 8DQCh. 15 - Provide a conceptual rationale for the differences...Ch. 15 - Prob. 10E
Ch. 15 - Consider the general reaction aA+bBcC and the...Ch. 15 - Prob. 12ECh. 15 - Prob. 13ECh. 15 - Prob. 14ECh. 15 - Prob. 15ECh. 15 - The hydroxyl radical (OH) is an important...Ch. 15 - Prob. 17ECh. 15 - The reaction 2NO(g)+Cl2(g)2NOCl(g) was studied at...Ch. 15 - Prob. 19ECh. 15 - The following data were obtained for the gas-phase...Ch. 15 - Prob. 21ECh. 15 - Prob. 22ECh. 15 - Prob. 23ECh. 15 - Prob. 24ECh. 15 - Prob. 25ECh. 15 - Prob. 26ECh. 15 - Prob. 27ECh. 15 - Prob. 28ECh. 15 - If the half-life for a reaction is 20. seconds,...Ch. 15 - A certain reaction has the following general form:...Ch. 15 - Prob. 31ECh. 15 - Prob. 32ECh. 15 - The decomposition of hydrogen peroxide was studied...Ch. 15 - Prob. 34ECh. 15 - Prob. 35ECh. 15 - Prob. 36ECh. 15 - At 500K in the presence of a copper surface,...Ch. 15 - Experimental data for the reaction A2B+C have been...Ch. 15 - The reaction NO(g)+O3(g)NO2(g)+O2(g) was studied...Ch. 15 - Determine the forms of the integrated and the...Ch. 15 - Prob. 41ECh. 15 - Prob. 42ECh. 15 - Prob. 43ECh. 15 - Prob. 44ECh. 15 - Prob. 45ECh. 15 - Prob. 46ECh. 15 - Prob. 47ECh. 15 - Prob. 48ECh. 15 - Prob. 49ECh. 15 - Prob. 50ECh. 15 - Prob. 51ECh. 15 - Prob. 52ECh. 15 - Prob. 53ECh. 15 - Prob. 54ECh. 15 - Prob. 55ECh. 15 - Define each of the following. elementary step...Ch. 15 - Define what is meant by unimolecular and...Ch. 15 - What two requirements must be met to call a...Ch. 15 - Prob. 59ECh. 15 - Prob. 60ECh. 15 - A proposed mechanism for a reaction is...Ch. 15 - Is the mechanism NO+Cl2k1NOCl2NOCl2+NOk22NOCl...Ch. 15 - The reaction 2NO(g)+O2(g)2NO2(g) exhibits the rate...Ch. 15 - Prob. 64ECh. 15 - The reaction...Ch. 15 - Prob. 66ECh. 15 - Prob. 67ECh. 15 - Prob. 68ECh. 15 - The following mechanism is proposed for the...Ch. 15 - The following mechanism has been proposed to...Ch. 15 - Consider the hypothetical reaction BE+F which is...Ch. 15 - How is the rate of a reaction affected by each of...Ch. 15 - The central idea of the collision model is that...Ch. 15 - Prob. 74ECh. 15 - Prob. 75ECh. 15 - Consider the following potential energy plots Rank...Ch. 15 - Prob. 77ECh. 15 - Prob. 78ECh. 15 - Prob. 79ECh. 15 - Prob. 80ECh. 15 - Prob. 81ECh. 15 - Chemists commonly use a rule of thumb that an...Ch. 15 - Prob. 83ECh. 15 - Prob. 84ECh. 15 - Prob. 85ECh. 15 - Prob. 86ECh. 15 - For the following reaction profiles, indicate the...Ch. 15 - Prob. 88ECh. 15 - Prob. 89ECh. 15 - Prob. 90ECh. 15 - Prob. 91ECh. 15 - Prob. 92ECh. 15 - The decomposition of NH3 to N2 and H2 was studied...Ch. 15 - One pathway for the destruction of ozone in the...Ch. 15 - Prob. 95ECh. 15 - Prob. 96ECh. 15 - Prob. 97ECh. 15 - Prob. 98ECh. 15 - Prob. 99ECh. 15 - Prob. 100AECh. 15 - Prob. 101AECh. 15 - Prob. 102AECh. 15 - Prob. 103AECh. 15 - Prob. 104AECh. 15 - Prob. 105AECh. 15 - Prob. 106AECh. 15 - Prob. 107AECh. 15 - Prob. 108AECh. 15 - Prob. 109AECh. 15 - The decomposition of NO2(g) occurs by the...Ch. 15 - Prob. 111AECh. 15 - Prob. 112AECh. 15 - Prob. 113AECh. 15 - Prob. 114AECh. 15 - Prob. 115AECh. 15 - Prob. 116AECh. 15 - The compound NO2Cl is thought to decompose to NO2...Ch. 15 - Prob. 118AECh. 15 - Prob. 119AECh. 15 - Prob. 120AECh. 15 - Prob. 121AECh. 15 - Prob. 122AECh. 15 - Prob. 123AECh. 15 - Prob. 124AECh. 15 - Prob. 125AECh. 15 - Prob. 126AECh. 15 - Consider the following reaction: CH3X+YCH3Y+X At...Ch. 15 - The following data were collected in two studies...Ch. 15 - Prob. 129CPCh. 15 - For the reaction 2A+Bproducts afriend proposes the...Ch. 15 - Consider the hypothetical reaction A+B+2C2D+3E In...Ch. 15 - A reaction represented by the equation...Ch. 15 - Prob. 133CPCh. 15 - You are studying the kinetics of the reaction...Ch. 15 - Prob. 135CPCh. 15 - Prob. 136MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Isomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forwardOne experimental procedure that can be used to determine the rate law of a reaction is the method of initial rates. What data are gathered in the method of initial rates, and how are these data manipulated to determine k and the orders of the species in the rate law? Are the units for k. the rate constant, the same for all rate laws? Explain. If a reaction is first order in A, what happens to the rate if [A] is tripled? If the initial rate for a reaction increases by a factor of 16 when [A] is quadrupled, what is the order of n? If a reaction is third order in A and [A] is doubled, what happens to the initial rate? If a reaction is zero order, what effect does [A] have on the initial rate of a reaction?arrow_forwardOzone, O3, in the Earths upper atmosphere decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast, reversible step followed by a slow, second step. Step 1: Fast, reversible O3(g) O2(g) + O(g) Step 2: Slow O3(g) + O(g) 2 O2(g) (a) Which of the steps is rate-determining? (b) Write the rate equation for the rate-determining steparrow_forward
- Chlorine dioxide, ClO2, is a reddish-yellow gas that is soluble in water. In basic solution it gives ClO3 and ClO2 ions. 2ClO2(aq)+2OH(aq)ClO3(aq)+ClO2(aq)+H2O To obtain the rate law for this reaction, the following experiments were run and, for each, the initial rate of reaction of ClO2 was determined. Obtain the rate law and the value of the rate constant.arrow_forwardConsider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forward
- The following statements relate to the reaction for the formation of HI: H2(g) + I2(g) 2 HI(g)Rate = k[H2][I2] Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. (a) The reaction must occur in a single step. (b) This is a second-order reaction overall. (c) Raising the temperature will cause the value of k to decrease. (d) Raising the temperature lowers the activation energy for this reaction. (e) If the concentrations of both reactants are doubled, the rate will double. (f) Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forwardKinetics I Consider the hypothetical reaction A(g) + 2B(g) h C(g). The four containers below represent this reaction being run with different initial amounts of A and B. Assume that the volume of each container is 1.0 L. The reaction is second order with respect to A and first order with respect to B. a Based on the information presented in the problem, write the rate law for the reaction. b Which of the containers, W, X, Y, or Z, would have the greatest reaction rate? Justify your answer. c Which of the containers would have the lowest reaction rate? Explain. d If the volume of the container X were increased to 2.0 L, how would the rate of the reaction in this larger container compare to the rate of reaction run in the 1.0-L container X? (Assume that the number of A and B atoms is the same in each case.) e If the temperature in container W were increased, what impact would this probably have on the rate of reaction? Why? f If you want to double the rate of reaction in container X, what are some things that you could do to the concentration(s) of A and B? g In which container would you observe the slowest rate of formation of C? h Assuming that A and B are not in great excess, which would have the greater impact on the rate of reaction in container W: removing a unit of B or removing a unit of A? Explain. i Describe how the rate of consumption of A compares to the rate of consumption of B. If you cannot answer this question, what additional information do you need to provide an answer? j If the product C were removed from the container as it formed, what effect would this have on the rate of the reaction?arrow_forwardThe decomposition of many substances on the surface of a heterogeneous catalyst shows the following behavior: How do you account for the rate law changing from first order to zero order in the concentration of reactant?arrow_forward
- In Exercise 11.39, if the initial concentration of N2Oj is 0.100 .\1. how long will it take for the concentration to drop to 0.0100 times its original value? The decomposition of N2O5 in solution in carbon tetrachloride is a first-order reaction: 2N2O5—»4NO2 + O2 The rate constant at a given temperature is found to be 5.25 X 10-4 s-’. If the initial concentration of N2O5 is 0.200 M, what is its concentration after exactly 10 minutes have passed?arrow_forwardThe reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY