
Traffic And Highway Engineering
5th Edition
ISBN: 9781133605157
Author: Garber, Nicholas J., Hoel, Lester A.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 12P
To determine
(a)
The central angle of the curve for the highway design engineer to obtain simple curve to join tangents.
To determine
(b)
Radius of the curve.
To determine
(c)
Length of the tangent of the curve.
To determine
(d)
Station of the PC.
To determine
(e)
Length of the curve.
To determine
(f)
Station of the PT.
To determine
(g)
Deflection angle and chord from the PC to the first full station of the curve.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Consider the following static route choice problem where 110 vehicles travel from point A to
point B. The corresponding travel time (in minutes) of each link is as follows:
t₁ = x1; t₂ =
x2 + 20; t3x3 + 10; t₁
= 3×4
where
Xi
denotes the number of vehicles that choose link i.
Find the number of vehicles that travel on each link when
a. The user equilibrium condition (UE) is satisfied, where vehicles select the route with the
minimum travel time; and
b. The system optimum condition (SO) is satisfied, where the total travel time is minimised.
C.
Report the total delay savings when satisfying SO instead of UE.
2
B
A
3
4
= α₂+
Assume an origin is connected to a destination with two routes. Assume the travel time of each
route has a linear relationship with the traffic flow on the route (t₁ = α₁ + b₁x₁ ; t₂
b2x2). Determine under what condition (e.g. a relationship among the parameters of the
performance functions) tolling cannot reduce the total travel time of the two routes.
Beban berjalan pada konstruksi balok seperti pada gambar, tentukan besar gaya dalam
yang terjadi dengan metode Garis Pengaruh. Gaya dalam berupa :
Reaksi tumpuan RA dan RB, Gaya lintang max di titik C, Momen Maksimum di titik C
A
+
Dimana:
B
D
10
5 m
5 m
P1 = 12t
P2 = 6t
P3 = 18t
q= 6 t/m
2
3
q = 6 t/m
P1 P2
P3
Chapter 15 Solutions
Traffic And Highway Engineering
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider the following static route choice problem where 110 vehicles travel from point A to point B. The corresponding travel time (in minutes) of each link is as follows: t₁ = x1 ; t₂ = = x2 + 20; t3 = x3 + 10; t₁ = 3x4 where Xi denotes the number of vehicles that choose link i. Find the number of vehicles that travel on each link when a. The user equilibrium condition (UE) is satisfied, where vehicles select the route with the minimum travel time; and b. The system optimum condition (SO) is satisfied, where the total travel time is minimised. C. Report the total delay savings when satisfying SO instead of UE. 2 A B 3 4arrow_forward= Assume an origin is connected to a destination with two routes. Assume the travel time of each route has a linear relationship with the traffic flow on the route (t₁ = α₁ + b₁×₁ ; t₂ b2x2). Determine under what condition (e.g. a relationship among the parameters of the performance functions) tolling cannot reduce the total travel time of the two routes. a2+arrow_forwardFor the soil system presented below, calculate and draw diagrams of distributions of the totaland effective stresses and pore water pressure. Assume an upward water flow with a velocity of0.000,001 cm/s.arrow_forward
- Refer to attached problem.arrow_forwardCalculate: a) effective stresses at points A and B before the placement of foundations 1 and 2, b)the increase of pressure at point A as a result of the placement of the circular foundation 1, c) theincrease of pressure at point B as a result of the placement of the strip foundation 2.arrow_forwardConsider the total head-loss in the system forthis flow is 18.56 ft (head-losses in first and second pipe are 13.83 ft and 4.73 ftrespectively). Please show numerical values for EGL/HGL at the beginning/end/intermediatechange point. (Point distribution: elevation determination 5 points, EGL, HGL lines 4points)arrow_forward
- As shown in the figure below, a 1.5 m × 1.5 m footing is carrying a 400 kN load. P Depth (m) 0.0 1.0 2.0 Df Groundwater table (Yw = 9.81 kN/m³) 3.5 Yt = 16.5 kN/m³ E = 9,000 kPa Sandy soil Ysat 17.5 kN/m³ E = 15,000 kPa 6.0 Stiff Clay (OCR = 2) Bedrock Ysat 18.0 kN/m³ eo = 0.8 Cc = 0.15, Cr = 0.02 Eu =40,000 kPa (a) Estimate the immediate settlement beneath the center of the footing. Assuming that Poisson's ratios of sand and soft clay are 0.3 and 0.5, respectively. Use numerical integration approach. For the calculations, use layers (below the bottom of the footing) of thicknesses: 1 m; 1.5 m, and 2.5 m. (b) Determine the primary consolidation settlement beneath the center of the footing. (c) Redo Part (b) if OCR=1.1. Note: Use the 2:1 method to determine the stress increase below the footing. For parts (b) and (c), use the one-dimensional consolidation theory.arrow_forwardAssuming that the whole DMV is only handled by one queue and one server and both the arrival rate (20 customer per hour) and the service rate (30 customers per hour) random variables are Markovian. (a) What is the mean queue length? [3 pts] (b) Percentage of Idle time of the server? [3 pts] (c) Average number in the queue? [3 pts] (d) Average number in the system? [3 pts] (e) The average wait time in the queue? [3 pts] (f) The average wait time in the system? [3 pts] (g) The probability that no one is in the system. [2 pts]arrow_forwardA toll booth on the Thruway experiences an average inter-arrival time of 3 minutes between each vehicle. As an operator, you want to have a mean queue length of at most 2 vehicles. What mean service rate (per hour) will the toll booth need to provide?arrow_forward
- A freeway is to be designed at a location on level terrain for an annual average daily traffic (AADT) of 45,000 vehicles per day. For a conversion of AADT to an annual hourly volume, assume that the K-factor is 0.10 (i.e., the 30th highest hourly volume of the year). In addition, 55% of the peak-hour traffic volume is expected to travel in the peak direction (D = 0.55). This freeway segment will be for regular commuters. Other estimates include: PHF of 0.95, free-flow speed of 65 mph, and 20% trucks of the traffic stream. In order to determine the number of lanes required to provide at least LOS C, answer the following questions. (a) Determine Free Flow Speed (FFS) [4 pts] (b) Find the directional design-hour volume (DDHV) [4 pts] (c) Find fHv [4 pts] (d) Determine the number of lanes required. [4 pts] (e) Check the expected LOS for 2-directional lanes on this freeway segment. [4 pts]arrow_forwardObserving a deterministic queue in 3 hours, suppose vehicles arrive at a rate of 500 vph for the first hour and 150 vph for the second and third hours. The service rate is 150 vph for the first two hours. The server can discharge 500 vehicles for the last hour. (a) What is the queue length after 30 minutes? [4 pts] (b) What is the maximum queue length? [4 pts] (c) When does the maximum queue happen? [4 pts] (d) What is the total delay? [4 pts] (e) Describe how the queue grows and discharges in this queuing process. [4 pts]arrow_forwardPlease explain step by step and show the formula usedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning

Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning

Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning