Precalculus Enhanced with Graphing Utilities
6th Edition
ISBN: 9780321795465
Author: Michael Sullivan, Michael III Sullivan
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.4, Problem 7AYU
To determine
Check whether the statement is true or false:
The slope of the tangent line to a function at is the derivative of at .
Expert Solution & Answer
Answer to Problem 7AYU
Solution:
True.
Explanation of Solution
Given:
The function is .
At the point , .
The slope of the tangent line of a function at the point is given by;
Moreover, the derivative of a function at the point is given by;
Therefore the slope of the tangent line to at is the derivative of at .
Hence the given statement is True.
Chapter 14 Solutions
Precalculus Enhanced with Graphing Utilities
Ch. 14.1 - Graph f( x )={ 3x2ifx2 3ifx=2 (pp.100-102)Ch. 14.1 - If f( x )={ xifx0 1ifx0 what is f( 0 ) ?...Ch. 14.1 - The limit of a function f( x ) as x approaches c...Ch. 14.1 - If a function f has no limit as x approaches c ,...Ch. 14.1 - True or False lim xc f( x )=N may be described by...Ch. 14.1 - True or False lim xc f( x ) exists and equals some...Ch. 14.1 - lim x2 ( 4 x 3 )Ch. 14.1 - lim x3 ( 2 x 2 +1 )Ch. 14.1 - lim x0 x+1 x 2 +1Ch. 14.1 - lim x0 2x x 2 +4
Ch. 14.1 - lim x4 x 2 4x x4Ch. 14.1 - lim x3 x 2 9 x 2 3xCh. 14.1 - lim x0 ( e x +1 )Ch. 14.1 - Prob. 14AYUCh. 14.1 - lim x0 cosx1 x , x in radiansCh. 14.1 - lim x0 tanx x , x in radiansCh. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.2 - The limit of the product of two functions equals...Ch. 14.2 - lim xc b= _____Ch. 14.2 - lim xc x= a. x b. c c. cx d. x cCh. 14.2 - True or False The limit of a polynomial function...Ch. 14.2 - True or False The limit of a rational function at...Ch. 14.2 - True or false The limit of a quotient equals the...Ch. 14.2 - In Problems 7- 42, find each limit algebraically....Ch. 14.2 - In Problems 7- 42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.3 - For the function f( x )={ x 2 ifx0 x+1if0x2...Ch. 14.3 - What are the domain and range of f( x )=lnx ?Ch. 14.3 - True or False The exponential function f( x )= e x...Ch. 14.3 - Name the trigonometric functions that have...Ch. 14.3 - True or False Some rational functions have holes...Ch. 14.3 - True or False Every polynomial function has a...Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - Find lim x 4 f( x ) .Ch. 14.3 - Find lim x 4 + f( x ) .Ch. 14.3 - Find lim x 2 f( x ) .Ch. 14.3 - Find lim x 2 + f( x ) .Ch. 14.3 - Does lim x4 f( x ) exist? If it does, what is it?Ch. 14.3 - Does lim x0 f( x ) exist? If it does, what is it?Ch. 14.3 - Is f continuous at 4 ?Ch. 14.3 - Is f continuous at 6 ?Ch. 14.3 - Is f continuous at 0?Ch. 14.3 - Is f continuous at 2?Ch. 14.3 - Is f continuous at 4?Ch. 14.3 - Is f continuous at 5?Ch. 14.3 - lim x 1 + ( 2x+3 )Ch. 14.3 - lim x 2 ( 42x )Ch. 14.3 - lim x 1 ( 2 x 3 +5x )Ch. 14.3 - lim x 2 + ( 3 x 2 8 )Ch. 14.3 - lim x/ 2 + sinxCh. 14.3 - lim x ( 3cosx )Ch. 14.3 - lim x 2 + x 2 4 x2Ch. 14.3 - lim x 1 x 3 x x1Ch. 14.3 - lim x 1 x 2 1 x 3 +1Ch. 14.3 - lim x 0 + x 3 x 2 x 4 + x 2Ch. 14.3 - lim x 2 + x 2 +x2 x 2 +2xCh. 14.3 - lim x 4 x 2 +x12 x 2 +4xCh. 14.3 - f( x )= x 3 3 x 2 +2x6c=2Ch. 14.3 - f( x )=3 x 2 6x+5c=3Ch. 14.3 - f( x )= x 2 +5 x6 c=3Ch. 14.3 - f( x )= x 3 8 x 2 +4 c=2Ch. 14.3 - f( x )= x+3 x3 c=3Ch. 14.3 - f( x )= x6 x+6 c=6Ch. 14.3 - f( x )= x 3 +3x x 2 3x c=0Ch. 14.3 - f( x )= x 2 6x x 2 +6x c=0Ch. 14.3 - f( x )={ x 3 +3x x 2 3x ifx0 1ifx=0 c=0Ch. 14.3 - f( x )={ x 2 6x x 2 +6x ifx0 2ifx=0 c=0Ch. 14.3 - f( x )={ x 3 +3x x 2 3x ifx0 1ifx=0 c=0Ch. 14.3 - f( x )={ x 2 6x x 2 +6x ifx0 1ifx=0 c=0Ch. 14.3 - f( x )={ x 3 1 x 2 1 ifx1 2ifx=1 3 x+1 ifx1 c=1Ch. 14.3 - f( x )={ x 2 2x x2 ifx2 2ifx=2 x4 x1 ifx2 c=2Ch. 14.3 - f( x )={ 2 e x ifx0 2ifx=0 x 3 +2 x 2 x 2 ifx0 c=0Ch. 14.3 - f( x )={ 3cosxifx0 3ifx=0 x 3 +3 x 2 x 2 ifx0 c=0Ch. 14.3 - f( x )=2x+3Ch. 14.3 - f( x )=43xCh. 14.3 - f( x )=3 x 2 +xCh. 14.3 - f( x )=3 x 3 +7Ch. 14.3 - f( x )=4sinxCh. 14.3 - f( x )=2cosxCh. 14.3 - f( x )=2tanxCh. 14.3 - f( x )=4cscxCh. 14.3 - f( x )= 2x+5 x 2 4Ch. 14.3 - f( x )= x 2 4 x 2 9Ch. 14.3 - f( x )= x3 InxCh. 14.3 - f( x )= lnx x3Ch. 14.3 - R( x )= x1 x 2 1 , c=1 and c=1Ch. 14.3 - R( x )= 3x+6 x 2 4 , c=2 and c=2Ch. 14.3 - R( x )= x 2 +x x 2 1 , c=1 and c=1Ch. 14.3 - R( x )= x 2 +4x x 2 16 , c=4 and c=4Ch. 14.3 - R( x )= x 3 x 2 +x1 x 4 x 3 +2x2Ch. 14.3 - R( x )= x 3 + x 2 +3x+3 x 4 + x 3 +2x+2Ch. 14.3 - R( x )= x 3 2 x 2 +4x8 x 2 +x6Ch. 14.3 - R( x )= x 3 x 2 +3x3 x 2 +3x4Ch. 14.3 - R( x )= x 3 +2 x 2 +x x 4 + x 3 +2x+2Ch. 14.3 - R( x )= x 3 3 x 2 +4x12 x 4 3 x 3 +x3Ch. 14.3 - R( x )= x 3 x 2 +x1 x 4 x 3 +2x2 Graph R(x) .Ch. 14.3 - R( x )= x 3 + x 2 +3x+3 x 4 + x 3 +2x+2 Graph R( x...Ch. 14.3 - R(x)= ( x 3 2 x 2 +4x8) ( x 2 +x6) Graph R( x ) .Ch. 14.3 - Prob. 86AYUCh. 14.3 - Prob. 87AYUCh. 14.3 - Prob. 88AYUCh. 14.3 - Prob. 89AYUCh. 14.3 - Prob. 90AYUCh. 14.4 - Find an equation of the line with slope 5...Ch. 14.4 - Prob. 2AYUCh. 14.4 - Prob. 3AYUCh. 14.4 - Prob. 4AYUCh. 14.4 - Prob. 5AYUCh. 14.4 - Prob. 6AYUCh. 14.4 - Prob. 7AYUCh. 14.4 - Prob. 8AYUCh. 14.4 - Prob. 9AYUCh. 14.4 - Prob. 10AYUCh. 14.4 - Prob. 11AYUCh. 14.4 - Prob. 12AYUCh. 14.4 - Prob. 13AYUCh. 14.4 - Prob. 14AYUCh. 14.4 - Prob. 15AYUCh. 14.4 - Prob. 16AYUCh. 14.4 - Prob. 17AYUCh. 14.4 - Prob. 18AYUCh. 14.4 - Prob. 19AYUCh. 14.4 - Prob. 20AYUCh. 14.4 - Prob. 21AYUCh. 14.4 - Prob. 22AYUCh. 14.4 - Prob. 23AYUCh. 14.4 - Prob. 24AYUCh. 14.4 - Prob. 25AYUCh. 14.4 - Prob. 26AYUCh. 14.4 - Prob. 27AYUCh. 14.4 - Prob. 28AYUCh. 14.4 - Prob. 29AYUCh. 14.4 - Prob. 30AYUCh. 14.4 - Prob. 31AYUCh. 14.4 - f( x )=cosx at 0Ch. 14.4 - Prob. 33AYUCh. 14.4 - Prob. 34AYUCh. 14.4 - Prob. 35AYUCh. 14.4 - Prob. 36AYUCh. 14.4 - Prob. 37AYUCh. 14.4 - Prob. 38AYUCh. 14.4 - Prob. 39AYUCh. 14.4 - Prob. 40AYUCh. 14.4 - Prob. 41AYUCh. 14.4 - Prob. 42AYUCh. 14.4 - Prob. 43AYUCh. 14.4 - Prob. 44AYUCh. 14.4 - Prob. 45AYUCh. 14.4 - Prob. 46AYUCh. 14.4 - Prob. 47AYUCh. 14.4 - Instantaneous Velocity of a Ball In physics it is...Ch. 14.4 - Instantaneous Velocity on the Moon Neil Armstrong...Ch. 14.4 - Instantaneous Rate of Change The following data...Ch. 14.5 - In Problems 29-32, find the first five terms in...Ch. 14.5 - Prob. 2AYUCh. 14.5 - Prob. 3AYUCh. 14.5 - Prob. 4AYUCh. 14.5 - Prob. 5AYUCh. 14.5 - Prob. 6AYUCh. 14.5 - Prob. 7AYUCh. 14.5 - Prob. 8AYUCh. 14.5 - Prob. 9AYUCh. 14.5 - Repeat Problem 9 for f( x )=4x .Ch. 14.5 - Prob. 11AYUCh. 14.5 - Prob. 12AYUCh. 14.5 - Prob. 13AYUCh. 14.5 - Prob. 14AYUCh. 14.5 - Prob. 15AYUCh. 14.5 - Prob. 16AYUCh. 14.5 - Prob. 17AYUCh. 14.5 - Prob. 18AYUCh. 14.5 - Prob. 19AYUCh. 14.5 - Prob. 20AYUCh. 14.5 - Prob. 21AYUCh. 14.5 - Prob. 22AYUCh. 14.5 - Prob. 23AYUCh. 14.5 - Prob. 24AYUCh. 14.5 - Prob. 25AYUCh. 14.5 - Prob. 26AYUCh. 14.5 - Prob. 27AYUCh. 14.5 - Prob. 28AYUCh. 14.5 - Prob. 29AYUCh. 14.5 - Prob. 30AYUCh. 14.5 - Prob. 31AYUCh. 14.5 - Consider the function f( x )= 1 x 2 whose domain...Ch. 14 - Prob. 1RECh. 14 - Prob. 2RECh. 14 - Prob. 3RECh. 14 - Prob. 4RECh. 14 - Prob. 5RECh. 14 - Prob. 6RECh. 14 - Prob. 7RECh. 14 - Prob. 8RECh. 14 - Prob. 9RECh. 14 - Prob. 10RECh. 14 - Prob. 11RECh. 14 - Prob. 12RECh. 14 - Prob. 13RECh. 14 - Prob. 14RECh. 14 - Prob. 15RECh. 14 - Prob. 16RECh. 14 - Prob. 17RECh. 14 - Prob. 18RECh. 14 - Prob. 19RECh. 14 - Prob. 20RECh. 14 - Prob. 21RECh. 14 - Prob. 22RECh. 14 - Prob. 23RECh. 14 - Prob. 24RECh. 14 - Prob. 25RECh. 14 - Prob. 26RECh. 14 - Prob. 27RECh. 14 - Prob. 28RECh. 14 - Prob. 29RECh. 14 - Prob. 30RECh. 14 - Prob. 31RECh. 14 - Prob. 32RECh. 14 - Prob. 33RECh. 14 - Prob. 34RECh. 14 - Prob. 35RECh. 14 - Prob. 36RECh. 14 - Prob. 37RECh. 14 - Prob. 38RECh. 14 - Prob. 39RECh. 14 - Prob. 40RECh. 14 - Prob. 41RECh. 14 - Prob. 42RECh. 14 - Prob. 43RECh. 14 - Prob. 44RECh. 14 - Prob. 1CTCh. 14 - Prob. 2CTCh. 14 - Prob. 3CTCh. 14 - Prob. 4CTCh. 14 - Prob. 5CTCh. 14 - Prob. 6CTCh. 14 - Prob. 7CTCh. 14 - Prob. 8CTCh. 14 - Prob. 9CTCh. 14 - Prob. 10CTCh. 14 - Prob. 11CTCh. 14 - Prob. 12CTCh. 14 - Prob. 13CTCh. 14 - Prob. 14CTCh. 14 - Prob. 15CTCh. 14 - Prob. 16CTCh. 14 - Prob. 17CT
Additional Math Textbook Solutions
Find more solutions based on key concepts
CHECK POINT 1 Find a counterexample to show that the statement The product of two two-digit numbers is a three-...
Thinking Mathematically (6th Edition)
Fill in each blank so that the resulting statement is true. If n is a counting number, bn, read ______, indicat...
College Algebra (7th Edition)
Time Employed A human resources manager for a large company takes a random sample of 50 employees from the comp...
Introductory Statistics
Read about basic ideas of statistics in Common Core Standards for grades 3-5, and discuss why students at these...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
1. combination of numbers, variables, and operation symbols is called an algebraic______.
Algebra and Trigonometry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Find the area of the shaded region. (a) 5- y 3 2- (1,4) (5,0) 1 3 4 5 6 (b) 3 y 2 Decide whether the problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. STEP 1: Consider the figure in part (a). Since this region is simply a triangle, you may use precalculus methods to solve this part of the problem. First determine the height of the triangle and the length of the triangle's base. height 4 units units base 5 STEP 2: Compute the area of the triangle by employing a formula from precalculus, thus finding the area of the shaded region in part (a). 10 square units STEP 3: Consider the figure in part (b). Since this region is defined by a complicated curve, the problem seems to require calculus. Find an approximation of the shaded region by using a graphical approach. (Hint: Treat the shaded regi as…arrow_forwardSolve this differential equation: dy 0.05y(900 - y) dt y(0) = 2 y(t) =arrow_forwardSuppose that you are holding your toy submarine under the water. You release it and it begins to ascend. The graph models the depth of the submarine as a function of time. What is the domain and range of the function in the graph? 1- t (time) 1 2 4/5 6 7 8 -2 -3 456700 -4 -5 -6 -7 d (depth) -8 D: 00 t≤ R:arrow_forward0 5 -1 2 1 N = 1 to x = 3 Based on the graph above, estimate to one decimal place the average rate of change from x =arrow_forwardComplete the description of the piecewise function graphed below. Use interval notation to indicate the intervals. -7 -6 -5 -4 30 6 5 4 3 0 2 1 -1 5 6 + -2 -3 -5 456 -6 - { 1 if x Є f(x) = { 1 if x Є { 3 if x Єarrow_forwardComplete the description of the piecewise function graphed below. 6 5 -7-6-5-4-3-2-1 2 3 5 6 -1 -2 -3 -4 -5 { f(x) = { { -6 if -6x-2 if -2< x <1 if 1 < x <6arrow_forwardLet F = V where (x, y, z) x2 1 + sin² 2 +z2 and let A be the line integral of F along the curve x = tcost, y = t sint, z=t, starting on the plane z = 6.14 and ending on the plane z = 4.30. Then sin(3A) is -0.598 -0.649 0.767 0.278 0.502 0.010 -0.548 0.960arrow_forwardLet C be the intersection of the cylinder x² + y² = 2.95 with the plane z = 1.13x, with the clockwise orientation, as viewed from above. Then the value of cos (₤23 COS 2 y dx xdy+3 z dzis 3 z dz) is 0.131 -0.108 -0.891 -0.663 -0.428 0.561 -0.332 -0.387arrow_forward2 x² + 47 The partial fraction decomposition of f(x) g(x) can be written in the form of + x3 + 4x2 2 C I where f(x) = g(x) h(x) = h(x) + x +4arrow_forwardThe partial fraction decomposition of f(x) 4x 7 g(x) + where 3x4 f(x) = g(x) = - 52 –10 12x237x+28 can be written in the form ofarrow_forward1. Sketch the following piecewise function on the graph. (5 points) x<-1 3 x² -1≤ x ≤2 f(x) = = 1 ४ | N 2 x ≥ 2 -4- 3 2 -1- -4 -3 -2 -1 0 1 -1- --2- -3- -4- -N 2 3 4arrow_forward2. Let f(x) = 2x² + 6. Find and completely simplify the rate of change on the interval [3,3+h]. (5 points)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY