Mathematical Ideas with Integrated Review and Worksheets plus NEW MyLab Math with Pearson eText -- Access Card Package (Integrated Review Courses in MyLab Math and MyLab Statistics)
1st Edition
ISBN: 9780321977274
Author: Miller, Charles, Heeren, Vern, HORNSBY, John, Christopher
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.1, Problem 44E
Chess Competition Students from two schools compete in chess. Each school has a team of four students. Each student must play one game against each student on the opposing team. Draw a graph with vertices representing the students, and edges representing the chess games. How many games must be played in the competition?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which color are you more likely to pick?
Put red cubes and yellow cubes in a bag.
Reach in and pick one cube. Color the graph to
show what you picked. Put the cube back in
the bag. Pick 10 times in all. Write your results.
Put 20 red cubes and 10 yellow cubes in a bag.
3
Put 20 red cubes and 2 yellow cubes in a bag.
Don't peek!
Put 10 red cubes and 10 yellow cubes in a bag.
Share
Compare your results with your classmates.
How are they alike? How are they different?
red
yellow
red
yellow
red
yellow
COO
Create a graph with seven vertices and exactly one bridge.
Which of the following graphs has seven vertices and exactly one bridge?
OA.
O B.
OC.
A
A
DE E G
D.
G
Next
acer
esc
#3
%
&
6.
8.
9.
2
3
4
Find the degree of each vertex in the graph.
C
B
....
Complete the following table.
Vertex
A
B
D
E
Degree of Vertex
(Type whole numbers.)
Chapter 14 Solutions
Mathematical Ideas with Integrated Review and Worksheets plus NEW MyLab Math with Pearson eText -- Access Card Package (Integrated Review Courses in MyLab Math and MyLab Statistics)
Ch. 14.1 - Vertices and Edges In Exercises 1-6, determine how...Ch. 14.1 - Vertices and Edges In Exercises 1-6, determine how...Ch. 14.1 - Vertices and Edges In Exercises 1-6, determine how...Ch. 14.1 - Prob. 4ECh. 14.1 - Prob. 5ECh. 14.1 - Prob. 6ECh. 14.1 - Prob. 7ECh. 14.1 - Prob. 8ECh. 14.1 - Prob. 9ECh. 14.1 - Prob. 10E
Ch. 14.1 - Prob. 11ECh. 14.1 - Prob. 12ECh. 14.1 - Prob. 13ECh. 14.1 - Prob. 14ECh. 14.1 - Prob. 15ECh. 14.1 - Prob. 16ECh. 14.1 - Prob. 17ECh. 14.1 - Prob. 18ECh. 14.1 - Prob. 19ECh. 14.1 - Prob. 20ECh. 14.1 - Prob. 21ECh. 14.1 - Prob. 22ECh. 14.1 - Prob. 23ECh. 14.1 - Prob. 24ECh. 14.1 - Prob. 25ECh. 14.1 - Number of Edges In Exercises 23-26, use the...Ch. 14.1 - Prob. 27ECh. 14.1 - Prob. 28ECh. 14.1 - Prob. 29ECh. 14.1 - Prob. 30ECh. 14.1 - Prob. 31ECh. 14.1 - Prob. 32ECh. 14.1 - Prob. 33ECh. 14.1 - Prob. 34ECh. 14.1 - Prob. 35ECh. 14.1 - Prob. 36ECh. 14.1 - Prob. 37ECh. 14.1 - Prob. 38ECh. 14.1 - Prob. 39ECh. 14.1 - Prob. 40ECh. 14.1 - Prob. 41ECh. 14.1 - Prob. 42ECh. 14.1 - Prob. 43ECh. 14.1 - 44. Chess Competition Students from two schools...Ch. 14.1 - Prob. 45ECh. 14.1 - Prob. 46ECh. 14.1 - Prob. 47ECh. 14.1 - Number of Handshakes There are seven people at a...Ch. 14.1 - Prob. 49ECh. 14.1 - Prob. 50ECh. 14.1 - Prob. 51ECh. 14.1 - 52. Students in the Same Class Mary, Erin, Sue,...Ch. 14.1 - Here is another theorem about graphs: In any...Ch. 14.1 - Draw two nonisomorphic (simple) graphs with 6...Ch. 14.1 - Explain why the two graphs drawn in Exercise 54...Ch. 14.1 - Analyzing a Cube with a Graph Draw a graph whose...Ch. 14.1 - Prob. 57ECh. 14.1 - Prob. 58ECh. 14.1 - Prob. 59ECh. 14.1 - Prob. 60ECh. 14.1 - Prob. 61ECh. 14.1 - Prob. 62ECh. 14.1 - Prob. 63ECh. 14.1 - Prob. 64ECh. 14.1 - Prob. 65ECh. 14.1 - Prob. 66ECh. 14.1 - Prob. 67ECh. 14.1 - Prob. 68ECh. 14.1 - Prob. 69ECh. 14.1 - Prob. 70ECh. 14.1 - 71. Inviting Colleagues to a Gathering Several of...Ch. 14.1 - Prob. 72ECh. 14.1 - Prob. 73ECh. 14.1 - Prob. 74ECh. 14.1 - Prob. 75ECh. 14.1 - Graph Coloring In Exercises 75 and 76, draw a...Ch. 14.1 - Prob. 77ECh. 14.1 - Prob. 78ECh. 14.1 - Prob. 79ECh. 14.1 - Prob. 80ECh. 14.1 - Prob. 81ECh. 14.1 - Prob. 82ECh. 14.1 - The Six Degrees of Kevin Bacon Use the Web site...Ch. 14.1 - The Six Degrees of Kevin BaconUse the Web site...Ch. 14.1 - The Six Degrees of Kevin BaconUse the Web site...Ch. 14.1 - The Six Degrees of Kevin Bacon Use the Web...Ch. 14.1 - The Six Degrees of Kevin Bacon Use the Web...Ch. 14.1 - The Six Degrees of Kevin Bacon Use the Web site...Ch. 14.1 - The Six Degrees of Kevin BaconUse the Web site...Ch. 14.1 - The Six Degrees of Kevin BaconUse the Web site...Ch. 14.1 - The Six Degrees of Kevin BaconUse the Web site...Ch. 14.1 - The Six Degrees of Kevin BaconUse the Web site...Ch. 14.1 - 93. Lines from She Walks in Beauty, by Lord...Ch. 14.1 - 94. Lines from Annabel Lee, by Edgar Allan Poe
It...Ch. 14.1 - Poetry Analysis Graphs may be used to clarify the...Ch. 14.1 - 96. Lines from Sailing to Byzantium, by William...Ch. 14.2 - Euler Circuits. In Exercises 1-3, a graph is shown...Ch. 14.2 - Prob. 2ECh. 14.2 - Euler Circuits In Exercises 1-3, a graph is shown...Ch. 14.2 - Prob. 4ECh. 14.2 - Euler's Theorem In Exercises 4-8, use Eulers...Ch. 14.2 - Prob. 6ECh. 14.2 - Euler's Theorem.In Exercises 4-8, use Eider's...Ch. 14.2 - Prob. 8ECh. 14.2 - Euler's Theorem In Exercises 9 and 10, use Eider's...Ch. 14.2 - Prob. 10ECh. 14.2 - Euler's Theorem In Exercises 11-14, use Eider's...Ch. 14.2 - Prob. 12ECh. 14.2 - Euler's Theorem In Exercises 11-14, use Euler's...Ch. 14.2 - Prob. 14ECh. 14.2 - Floor Tilings In Exercises 15-18, different floor...Ch. 14.2 - Prob. 16ECh. 14.2 - Floor Tilings In Exercises 15-18, different floor...Ch. 14.2 - Prob. 18ECh. 14.2 - Prob. 19ECh. 14.2 - Prob. 20ECh. 14.2 - Prob. 21ECh. 14.2 - Prob. 22ECh. 14.2 - Fleury's Algorithm In Exercises 23-25, a graph is...Ch. 14.2 - Prob. 24ECh. 14.2 - Prob. 25ECh. 14.2 - Prob. 26ECh. 14.2 - Fleury's Algorithm In Exercises 26-28\ use...Ch. 14.2 - Prob. 28ECh. 14.2 - Euler's Theorem and Fleury's Algorithm In...Ch. 14.2 - Euler's Theorem and Fleury's Algorithm In...Ch. 14.2 - Euler's Theorem and Fleury's Algorithm In...Ch. 14.2 - Prob. 32ECh. 14.2 - 33. Parking Pattern The map shows the roads on...Ch. 14.2 - Prob. 34ECh. 14.2 - Floor Plans In Exercises 34-36, the floor plan of...Ch. 14.2 - Prob. 36ECh. 14.2 - Exercises 37-44 are based on the following...Ch. 14.2 - Prob. 38ECh. 14.2 - Exercises 37-44 are based on the following...Ch. 14.2 - Prob. 40ECh. 14.2 - Exercises 37-44 are based on the following...Ch. 14.2 - Floor PlansIn Exercises 41-43, refer to the floor...Ch. 14.2 - Prob. 43ECh. 14.2 - Prob. 44ECh. 14.2 - Prob. 45ECh. 14.2 - Prob. 46ECh. 14.2 - Prob. 47ECh. 14.2 - Prob. 48ECh. 14.2 - Prob. 49ECh. 14.2 - Route Planning For each street grid in Exercise...Ch. 14.2 - Route Planning For each street grid in Exercise...Ch. 14.2 - Route Planning For each street grid in Exercise...Ch. 14.3 - Prob. 1ECh. 14.3 - Prob. 2ECh. 14.3 - Euler and Hamilton Circuits In Exercises 3 and 4,...Ch. 14.3 - Euler and Hamilton Circuits In Exercises 3 and 4,...Ch. 14.3 - Hamilton Circuits In Exercises 5-10, determine...Ch. 14.3 - Hamilton Circuits In Exercises 5-10, determine...Ch. 14.3 - Hamilton Circuits In Exercises 5-10, determine...Ch. 14.3 - Hamilton Circuits In Exercises 5-10, determine...Ch. 14.3 - Hamilton Circuits In Exercises 5-10, determine...Ch. 14.3 - Hamilton Circuits In Exercises 5-10, determine...Ch. 14.3 - Prob. 11ECh. 14.3 - Prob. 12ECh. 14.3 - Prob. 13ECh. 14.3 - Decide whether each statement is true or false. If...Ch. 14.3 - Hamilton and Euler Circuits In Exercises 15-20,...Ch. 14.3 - Hamilton and Euler Circuits In Exercises 15-20,...Ch. 14.3 - Hamilton and Euler Circuits In Exercises 15-20,...Ch. 14.3 - Hamilton and Euler Circuits In Exercises 15-20,...Ch. 14.3 - Hamilton and Euler Circuits In Exercises 15-20,...Ch. 14.3 - Hamilton and Euler Circuits In Exercises 15-20,...Ch. 14.3 - FactorialsIn Exercises 21-24, use a calculator, if...Ch. 14.3 - Factorials In Exercises 21-24, use a calculator,...Ch. 14.3 - Factorials In Exercises 21-24, use a calculator,...Ch. 14.3 - Prob. 24ECh. 14.3 - Hamilton Circuit In Exercises 25-28, determine how...Ch. 14.3 - Prob. 26ECh. 14.3 - Prob. 27ECh. 14.3 - Prob. 28ECh. 14.3 - List all Hamilton circuits in the graph that start...Ch. 14.3 - Prob. 30ECh. 14.3 - Prob. 31ECh. 14.3 - Prob. 32ECh. 14.3 - Prob. 33ECh. 14.3 - Prob. 34ECh. 14.3 - Prob. 35ECh. 14.3 - Prob. 36ECh. 14.3 - Prob. 37ECh. 14.3 - Brute Force Algorithm In Exercises 38-41, use the...Ch. 14.3 - Brute Force Algorithm In Exercises 38-41, use the...Ch. 14.3 - Brute Force Algorithm In Exercises 38-41, use the...Ch. 14.3 - Brute Force Algorithm In Exercises 38-41, use the...Ch. 14.3 - Prob. 42ECh. 14.3 - Prob. 43ECh. 14.3 - Nearest Neighbor Algorithm In Exercises 42-44, use...Ch. 14.3 - 45. Nearest Neighbor Algorithm Refer to the...Ch. 14.3 - Prob. 46ECh. 14.3 - Prob. 47ECh. 14.3 - Prob. 48ECh. 14.3 - Prob. 49ECh. 14.3 - Hamilton Circuits In Exercises 47-50, find all...Ch. 14.3 - Traveling Salesman Problem The diagram represents...Ch. 14.3 - Prob. 52ECh. 14.3 - The Icosian Game The graph below shows the Icosian...Ch. 14.3 - Prob. 54ECh. 14.3 - Dirac's Theorem Paul A. M. Dirac proved the...Ch. 14.4 - Prob. 1ECh. 14.4 - Prob. 2ECh. 14.4 - Prob. 3ECh. 14.4 - Prob. 4ECh. 14.4 - Prob. 5ECh. 14.4 - Prob. 6ECh. 14.4 - Prob. 7ECh. 14.4 - Prob. 8ECh. 14.4 - Prob. 9ECh. 14.4 - Prob. 10ECh. 14.4 - Prob. 11ECh. 14.4 - Tree or Not a Tree? In Exercises 11-13, determine...Ch. 14.4 - Prob. 13ECh. 14.4 - Prob. 14ECh. 14.4 - Trees and Cut Edges In Exercises 14-17, determine...Ch. 14.4 - Trees and Cut Edges In Exercises 14-17, determine...Ch. 14.4 - Prob. 17ECh. 14.4 - Prob. 18ECh. 14.4 - Prob. 19ECh. 14.4 - Prob. 20ECh. 14.4 - Prob. 21ECh. 14.4 - Prob. 22ECh. 14.4 - Prob. 23ECh. 14.4 - Prob. 24ECh. 14.4 - Prob. 25ECh. 14.4 - Prob. 26ECh. 14.4 - Prob. 27ECh. 14.4 - Prob. 28ECh. 14.4 - Prob. 29ECh. 14.4 - Prob. 30ECh. 14.4 - Prob. 31ECh. 14.4 - Prob. 32ECh. 14.4 - Prob. 33ECh. 14.4 - Town Water Distribution A town council is planning...Ch. 14.4 - Prob. 35ECh. 14.4 - Prob. 36ECh. 14.4 - Prob. 37ECh. 14.4 - Prob. 38ECh. 14.4 - Prob. 39ECh. 14.4 - For Exercise 34
Trees, Edges, and Vertices Work...Ch. 14.4 - 41. Suppose we have a tree with 10 vertices.
(a)...Ch. 14.4 - Prob. 42ECh. 14.4 - Prob. 43ECh. 14.4 - 44. Design of a Garden Maria has 12 vegetable and...Ch. 14.4 - Prob. 45ECh. 14.4 - Prob. 46ECh. 14.4 - Prob. 47ECh. 14.4 - Prob. 48ECh. 14.4 - Prob. 49ECh. 14.4 - Prob. 50ECh. 14.4 - Prob. 51ECh. 14.4 - Prob. 52ECh. 14.4 - Prob. 53ECh. 14.4 - Prob. 54ECh. 14.4 - Prob. 55ECh. 14.4 - Vertex/Edge Relationship In this exercise, we...Ch. 14 - Basic Concepts In Exercises 1-5, refer to the...Ch. 14 - Basic Concepts In Exercises 1-5, refer to the...Ch. 14 - Prob. 3TCh. 14 - Prob. 4TCh. 14 - Prob. 5TCh. 14 - Prob. 6TCh. 14 - Prob. 7TCh. 14 - Prob. 8TCh. 14 - Planning for Dinner Julia is planning to invite...Ch. 14 - Prob. 10TCh. 14 - Prob. 11TCh. 14 - Prob. 12TCh. 14 - Prob. 13TCh. 14 - Scheduling Exams A teacher at a high school must...Ch. 14 - Prob. 15TCh. 14 - Prob. 16TCh. 14 - Prob. 17TCh. 14 - Prob. 18TCh. 14 - Prob. 19TCh. 14 - Prob. 20TCh. 14 - Prob. 21TCh. 14 - Prob. 22TCh. 14 - Prob. 23TCh. 14 - Prob. 24TCh. 14 - Prob. 25TCh. 14 - 26. Nonisomorphic Trees Draw three nonisomorphic...Ch. 14 - Prob. 27TCh. 14 - Prob. 28TCh. 14 - Prob. 29TCh. 14 - Prob. 30TCh. 14 - Prob. 31TCh. 14 - Prob. 32T
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Discrete Matharrow_forwardThe floor plan of a five-room house is shown. The rooms are labeled A, B, C, D, and E. The outside of the house is labeled F. The openings represent doors. Use the floor plan to answer the questions below. A B E a. Draw a graph that models the connecting relationships in each floor plan. Use vertices to represent the rooms and the outside, and edges to represent the connecting doors. Choose the correct answer below. A F А C В A D В E D В B D E D E F Yes - a path exists No such path exists DA BFCE Drag the correct answer into the target below, then, if a path exists, drag the vertex labels to the appropriate locations in the path. b. Use your graph to determine if it is possible to find a path that uses each door only once. c. If such a path exists, find one. If a path exists, it goes from F to B to E to to to to toarrow_forwardDiscrete Matharrow_forward
- Karen must choose a size, a flavor of ice cream, and a topping for her ice cream dessert. There are two sizes to choose from: small and medium. There are two flavors to choose from: chocolate and strawberry. There are two toppings to choose from: cherries and nuts. The tree diagram below shows the possible outcomes. Use the diagram to answer the questions. Flavor Topping Outcome cherries nuts cherries nuts cherries nuts cherries nuts Size small medium chocolate strawberry chocolate strawberry (a) How many outcomes are there? outcome(s) (small, chocolate, cherries) (small, chocolate, nuts) (small, strawberry, cherries) (small, strawberry, nuts) X (medium, chocolate, cherries) (medium, chocolate, nuts) (medium, strawberry, cherries) (medium, strawberry, nuts) (b) How many outcomes do not have chocolate ice cream being chosen? outcome(s) (c) How many outcomes have both strawberry ice cream and cherries being chosen? outcome(s) 5arrow_forwardThe door plan of a warehouse is illustrated below. Use a graph to represent the door plan, and answer the question: Is it possible to walk through the warehouse so that you pass through every doorway without going to the same doorway twice? Explain your answerarrow_forwardGiven the geometric figure below with 5 vertices and 8 lines: E B a. Input the degree number for each vertex. Type it on the table. Vertex Degree Vertex A Vertex B Vertex C Vertex D Vertex E c. How many vertices have even degree?arrow_forward
- Determine the edge connectivity and the vertex connectivity of each graph.arrow_forwardRepresent the map by a graph and find a coloring of the graph that uses the smallest possible number of colors. Thank you!arrow_forwardAt a volleyball game. The players stood in a row ordered by height. If Lyle is shorter than Kerry, Mona is taller than Kerry, and Shana is taller than Mona, who is the tallest and who is the shortest?arrow_forward
- What is the sum of degrees of the nodes of the following cycle graph= 2 6. 3 2 14 21arrow_forwardDetermine the number of vertices, the number of edges, and the balance of the graph below. About 285,000r 1. Number of vertices: Preview Did you mea https://library.om 2. Number of edges: Preview Primes, Pm 3. If we dash the edges AD, BD, and CD, is the graph balanced in the sense of the essay "The Enemy of My Enemy"?: by T Wood 2 curricula. . Ta О yes https://ibra O no Primes by T Woom Mathema People What typ What is a Are prim What de https:// Prim Licensearrow_forwardTask-1. A Class of 40 students completed a survey on what pets they like. The choices were: Cats, Dogs, and Birds. Everyone liked at least one pet, 6 students liked Cats and Dogs but not birds, 2 students liked Dogs and Birds but not Cats, 2 students liked all three pets, 10 students liked Cats only, 9 students liked Dogs only, 1 student liked Birds only. Draw the 3 circle Venn diagram to find out the number of students who liked Cats and Birds but not dogs?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Graph Theory: Euler Paths and Euler Circuits; Author: Mathispower4u;https://www.youtube.com/watch?v=5M-m62qTR-s;License: Standard YouTube License, CC-BY
WALK,TRIAL,CIRCUIT,PATH,CYCLE IN GRAPH THEORY; Author: DIVVELA SRINIVASA RAO;https://www.youtube.com/watch?v=iYVltZtnAik;License: Standard YouTube License, CC-BY