Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 57P
SSM A cylindrical tank with a large diameter is filled with water to a depth D = 0.30 m. A hole of cross-sectional area A = 6.5 cm2 in the bottom of the tank allows water to drain out. (a) What is the drainage rate in cubic meters per second? (b) At what distance below the bottom of the tank is the cross-sectional area of the stream equal to one-half the area of the hole?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cylindrical tank with a large diameter is filled with water to a depth D = 0.419 m. A hole of cross-sectional area A = 7.67 cm² in the
bottom of the tank allows water to drain out. (a) What is the rate at which water flows out, in cubic meters per second? (b) At what
distance below the bottom of the tank is the cross-sectional area of the stream equal to one-half the area of the hole?
(a) Number i
(b) Number i
Units
Units
<
A cylindrical tank with a large diameter is filled with water to a depth D = 0.278 m. A hole of cross-sectional area A = 7.04 cm2 in the bottom of the tank allows water to drain out. (a) What is the rate at which water flows out, in cubic meters per second? (b) At what distance below the bottom of the tank is the cross-sectional area of the stream equal to one-half the area of the hole?
A cylindrical tank with a large diameter is filled with water to a depth D = 0.235 m. A hole of cross-sectional area A = 6.96 cm2 in the bottom of the tank allows water to drain out. (a) What is the rate at which water flows out, in cubic meters per second? (b) At what distance below the bottom of the tank is the cross-sectional area of the stream equal to one-half the area of the hole?
Chapter 14 Solutions
Fundamentals of Physics Extended
Ch. 14 - We fully submerge an irregular 3 kg lump of...Ch. 14 - Figure 14-21 shows four situations in which a red...Ch. 14 - A boat with an anchor on board floats in a...Ch. 14 - Figure 14-22 shows a tank filled with water. Five...Ch. 14 - The teapot effect. Water poured slowly from a...Ch. 14 - Figure 14-24 shows three identical open-top...Ch. 14 - Figure 14-25 shows four arrangements of pipes...Ch. 14 - A rectangular block is pushed face-down into three...Ch. 14 - Water flows smoothly in a horizontal pipe. Figure...Ch. 14 - We have three containers with different Liquids....
Ch. 14 - ILW A fish maintains its depth in fresh water by...Ch. 14 - A partially evacuated airtight container has a...Ch. 14 - SSM Find the pressure increase in the fluid in a...Ch. 14 - Three liquids that will not mix are poured into a...Ch. 14 - SSM An office window has dimensions 3.4 m by 2.1...Ch. 14 - Prob. 6PCh. 14 - In 1654 Otto von Guericke, inventor of the air...Ch. 14 - The bends during flight. Anyone who scuba dives is...Ch. 14 - Blood pressure in Argentinosaurus. a If this...Ch. 14 - The plastic tube in Fig. 14-30 has a...Ch. 14 - Giraffe bending to drink. In a giraffe with its...Ch. 14 - The maximum depth dmax that a diver can snorkel is...Ch. 14 - At a depth of 10.5 km, the Challenger Deep in the...Ch. 14 - Calculate the hydrostatic difference in blood...Ch. 14 - What gauge pressure must a machine produce in...Ch. 14 - Snorkeling by humans and elephants. When a person...Ch. 14 - SSM Crew members attempt to escape from a damaged...Ch. 14 - In Fig. 14-32, an open tube of length L = 1.8 m...Ch. 14 - GO A large aquarium of height 5.00 m is filled...Ch. 14 - The L-shaped fish tank shown in Fig. 14-33 is...Ch. 14 - SSM Two identical cylindrical vessels with their...Ch. 14 - Prob. 22PCh. 14 - GO In analyzing certain geological features, it is...Ch. 14 - GO In Fig. 14-35, water stands at depth D = 35.0 m...Ch. 14 - In one observation, the column in a mercury...Ch. 14 - To suck lemonade of density 1000 kg/m3 up a straw...Ch. 14 - SSM What would be the height of the atmosphere if...Ch. 14 - A piston of cross-sectional area a is used in a...Ch. 14 - In Fig 14-37, a spring of spring constant 3.00 ...Ch. 14 - A 5.00 kg object is released from rest while fully...Ch. 14 - SSM A block of wood floats in fresh water with...Ch. 14 - In Fig. 14-38, a cube of edge length L = 0.600 m...Ch. 14 - SSM An iron anchor of density 7870kg/m3 appears...Ch. 14 - A boat floating in fresh water displaces water...Ch. 14 - Three children, each of weight 356 N, make a log...Ch. 14 - GO In Fig. 14-39a, a rectangular block is...Ch. 14 - ILW A hollow spherical iron shell floats almost...Ch. 14 - GO A small solid ball is released from rest while...Ch. 14 - SSM WWW A hollow sphere of inner radius 8.0 cm and...Ch. 14 - Lurking alligators. An alligator waits for prey by...Ch. 14 - What fraction of the volume of an iceberg density...Ch. 14 - A Flotation device is in the shape of a right...Ch. 14 - When researchers find a reasonably complete fossil...Ch. 14 - A wood block mass 3.67 kg, density 600 kg/m3 is...Ch. 14 - GO An iron casting containing a number of cavities...Ch. 14 - GO Suppose that you release a small ball from rest...Ch. 14 - The volume of air space in the passenger...Ch. 14 - GO Figure 14-44 shows an iron ball suspended by...Ch. 14 - Canal effect. Figure 14-45 shows an anchored barge...Ch. 14 - Figure 14-46 shows two sections of an old pipe...Ch. 14 - SSM A garden hose with an internal diameter of 1.9...Ch. 14 - Two streams merge to form a river. One stream has...Ch. 14 - SSM Water is pumped steadily out of a flooded...Ch. 14 - GO The water flowing through a 1.9 cm inside...Ch. 14 - How much work is done by pressure in forcing 1.4...Ch. 14 - Suppose that two tanks, 1 and 2, each with a large...Ch. 14 - SSM A cylindrical tank with a large diameter is...Ch. 14 - The intake in Fig. 14-47 has cross-sectional area...Ch. 14 - SSM Water is moving with a speed of 5.0 m/s...Ch. 14 - Models of torpedoes are sometimes tested in a...Ch. 14 - ILW A water pipe having a 2.5 cm inside diameter...Ch. 14 - A pitot tube Fig. 14-48 is used to determine the...Ch. 14 - Prob. 63PCh. 14 - GO In Fig. 14-49, water flows through a horizontal...Ch. 14 - SSM WWW A venturi meter is used to measure the...Ch. 14 - Consider the venturi tube of Problem 65 and Fig....Ch. 14 - ILW In Fig. 14-51, the fresh water behind a...Ch. 14 - GO Fresh water flows horizontally from pipe...Ch. 14 - A liquid of density 900 kg/m3 flows through a...Ch. 14 - GO In Fig. 14-53, water flows steadily from the...Ch. 14 - Figure 14-54 shows a stream of water flowing...Ch. 14 - GO A very simplified schematic of the rain...Ch. 14 - About one-third of the body of a person floating...Ch. 14 - A simple open U-tube contains mercury. When 11.2...Ch. 14 - If a bubble in sparkling water accelerates upward...Ch. 14 - Suppose that your body has a uniform density of...Ch. 14 - Prob. 77PCh. 14 - Caught in an avalanche, a skier is fully submerged...Ch. 14 - An object hangs from a spring balance. The balance...Ch. 14 - In an experiment, a rectangular block with height...Ch. 14 - SSM Figure 14-30 shows a modified U-tube: the...Ch. 14 - What is the acceleration of a rising hot-air...Ch. 14 - Figure 14-56 shows a siphon, which is a device for...Ch. 14 - When you cough, you expel air at high speed...Ch. 14 - A tin can has a total volume of 1200 cm3 and a...Ch. 14 - The tension in a string holding a solid block...Ch. 14 - What is the minimum area in square meters of the...Ch. 14 - A 8.60 kg sphere of radius 6.22 cm is at a depth...Ch. 14 - a For seawater of density 1.03 g/cm3, find the...Ch. 14 - The sewage outlet of a house constructed on a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
WRITE ABOUT A THEME: ORGANIZATION Cells arc the basic units of structure and function in all organisms. A key f...
Campbell Biology (11th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A horizontal pipe 10.0 cm in diameter has a smooth reduction to a pipe 5.00 cm in diameter. If the pressure of the water in the larger pipe is 8.00 104 Pa and the pressure in the smaller pipe is 6.00 104 Pa, at what rate does water flow through the pipes?arrow_forwardA container of water has a cross-sectional area of A=0.1m2 . A piston sits top of the water (see be following figure). There is a spout located 0.15 m from the bottom of tank, open to the atmosphere, and a stream of water exits the spout. The cross sectional area of the spat is As=7.0104m2 . (a) What is the velocity of the water as it leaves the spout? (b) If the opening of the spout is located 1.5 m above the grand, how far from be pout does water hit the floor? Ignore friction and dissipative forces.arrow_forwardThe small piston of a hydraulic lift (Fig. P15.6) has a cross-sectional area of 3.00 cm2, and its large piston has a cross-sectional area of 200 cm2. What downward force of magnitude F1 must be applied to the small piston for the lift to raise a load whose weight is Fg = 15.0 kN? Figure P15.6arrow_forward
- A rod extending between x = 0 and x = 14.0 cm has uniform cross-sectional area A = 9.00 cm2. Its density increases steadily between its ends from 2.70 g/cm3 to 19.3 g/cm3. (a) Identify the constants B and C required in the expression = B + Cx to describe the variable density. (b) The mass of the rod is given by m=allmaterialdV=allxAdx=014.0cm(B+Cx)(9.00cm2)dx Carry out the integration to find the mass of the rod.arrow_forwardA cylindrical tank with a large diameter is filled with water to a depth D = 0.30 m. A hole of cross-sectional area A = 6.5 cm2in the bottom of the tank allows water to drain out. What is the drainage rate in cubic meters per second?arrow_forwardAcylindrical tank withalarge diameter is filled with water to a depth D= 0.401 m. A hole of cross-sectional area A = 5.81 cm² in the bottom of the tank allows water to drain out. (a) What is the rate at which water flows out, in cubic meters per second? (b) At what distance below the bottom of the tank is the cross-sectional area of the stream equal to one-half the area of the hole? (a) Number Units (b) Number Unitsarrow_forward
- A reservoir has the shape of a sphere with radius 6 m. It is filled up to 10 m with water. (i) Let z be the height in meters measured from the base of the reservoir. The weight in Newtons of a thin layer of water between zand z+Az is approximately P (1) Az. What is P (1) ? P (2) = Express the answer using a formula. Recall that the density of water is p = 1000 Kg/m³ and the acceleration due to gravity on the earth's surface is g = 9.8 m (ii) The work in Joules required to pump the thin water layer to 2 meters above the reservoir is approximately w (1) Az. What is w (1) ? w (x) = Express the answer as a formula. (iii) Using pro Answer: TYMINUCI Joules marrow_forwardA legendary Dutch boy saved Holland by plugging a hole in a dike with his finger, which is 1.10 cm in diameter. (a) If the hole was 1.80 m below the surface of the North Sea (density 1030 kg/m3), what was the force on his finger? 1.73 (b) If he pulled his finger out of the hole, how long would it take the released water to fill 1 acre of land to a depth of 1 ft assuming the hole remained constant in size? (A typical U.S. family of four uses 1 acre-foot of water, 1234 m3, in 1 year.) 2190000 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. daysarrow_forwardA water pipe has a diameter of 1 inch and is constricted to 0.5 inches. If water flows from the bigger diameter to the smaller diameter and the speed of water at the bigger diameter is 78.720 inch per second, how much water flows through the pipe in cubic feet per second? . COMPLETE SOLUTION WITH FBDarrow_forward
- According to the continuity equation for fluid flow, the speed of a fluid flowing through a section of a pipe is inversely proportional to the cross-sectional area of that portion of the pipe. A continuous pipe has a reduction in area; that is from 45 cm2 to 20 cm2. What is the speed of water flowing in the narrow cross section of the pipe if at the larger cross section it is flowing at 16 m/s?arrow_forwardA trough has an open top 0.30 m by 6 mand closed vertical ends which are equilateral triangles 30 cm on each side. If it is filled with water to half its depth, what is the volume of the water in cubic meters?" 0.058 0.046 0.037 O 0.065arrow_forwardA legendary Dutch boy saved Holland by plugging a hole in a dike with his finger, which is 1.00 cm in diameter. (a) If the hole was 3.00 m below the surface of the North Sea (density 1030 kg/m³), what was the force on his finger? (b) If he pulled his finger out of the hole, how long would it take the released water to fill 1 acre of land to a depth of 1 ft assuming the hole remained constant in size? (A typical U.S. family of four uses 1 acre-foot of water, 1234 m³, in 1 year.) daysarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How to Calculate Density of Liquids - With Examples; Author: cleanairfilms;https://www.youtube.com/watch?v=DVQMWihs3wQ;License: Standard YouTube License, CC-BY