Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 75P
If a bubble in sparkling water accelerates upward at the rate of 0.225 m/s2 and has a radius of 0.500 mm, what is its mass? Assume that the drag force on the bubble is negligible.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If a bubble in sparkling water accelerates upward at the rate of 0.225 m/s2 and has a radius of 0.500 mm, what is its mass? Assume that the drag force on the bubble is negligible.
Within a certain type of star called a neutron star, the material at the center has a mass density of 1.0 x 1018 kg/m³. If a tiny
sphere of this material of radius 1.0 x 10-5 m were somehow transported to the surface of the earth, what would be the weight
of this sphere?
O 3.8 × 10⁹ N
O 4.1 × 104 N
O 1000 N
O 7.0 × 104 N
O 4200 N
A fuel pump sends gasoline form a car's fuel tank to the engine at a rate of 7.85 x 10-2 kg/s. The density of the gasoline is 736 kg/m3, and the radius of the fuel line is 3.62 x 10-3 m. What is the speed at which gasoline moves through the fuel line?
Chapter 14 Solutions
Fundamentals of Physics Extended
Ch. 14 - We fully submerge an irregular 3 kg lump of...Ch. 14 - Figure 14-21 shows four situations in which a red...Ch. 14 - A boat with an anchor on board floats in a...Ch. 14 - Figure 14-22 shows a tank filled with water. Five...Ch. 14 - The teapot effect. Water poured slowly from a...Ch. 14 - Figure 14-24 shows three identical open-top...Ch. 14 - Figure 14-25 shows four arrangements of pipes...Ch. 14 - A rectangular block is pushed face-down into three...Ch. 14 - Water flows smoothly in a horizontal pipe. Figure...Ch. 14 - We have three containers with different Liquids....
Ch. 14 - ILW A fish maintains its depth in fresh water by...Ch. 14 - A partially evacuated airtight container has a...Ch. 14 - SSM Find the pressure increase in the fluid in a...Ch. 14 - Three liquids that will not mix are poured into a...Ch. 14 - SSM An office window has dimensions 3.4 m by 2.1...Ch. 14 - Prob. 6PCh. 14 - In 1654 Otto von Guericke, inventor of the air...Ch. 14 - The bends during flight. Anyone who scuba dives is...Ch. 14 - Blood pressure in Argentinosaurus. a If this...Ch. 14 - The plastic tube in Fig. 14-30 has a...Ch. 14 - Giraffe bending to drink. In a giraffe with its...Ch. 14 - The maximum depth dmax that a diver can snorkel is...Ch. 14 - At a depth of 10.5 km, the Challenger Deep in the...Ch. 14 - Calculate the hydrostatic difference in blood...Ch. 14 - What gauge pressure must a machine produce in...Ch. 14 - Snorkeling by humans and elephants. When a person...Ch. 14 - SSM Crew members attempt to escape from a damaged...Ch. 14 - In Fig. 14-32, an open tube of length L = 1.8 m...Ch. 14 - GO A large aquarium of height 5.00 m is filled...Ch. 14 - The L-shaped fish tank shown in Fig. 14-33 is...Ch. 14 - SSM Two identical cylindrical vessels with their...Ch. 14 - Prob. 22PCh. 14 - GO In analyzing certain geological features, it is...Ch. 14 - GO In Fig. 14-35, water stands at depth D = 35.0 m...Ch. 14 - In one observation, the column in a mercury...Ch. 14 - To suck lemonade of density 1000 kg/m3 up a straw...Ch. 14 - SSM What would be the height of the atmosphere if...Ch. 14 - A piston of cross-sectional area a is used in a...Ch. 14 - In Fig 14-37, a spring of spring constant 3.00 ...Ch. 14 - A 5.00 kg object is released from rest while fully...Ch. 14 - SSM A block of wood floats in fresh water with...Ch. 14 - In Fig. 14-38, a cube of edge length L = 0.600 m...Ch. 14 - SSM An iron anchor of density 7870kg/m3 appears...Ch. 14 - A boat floating in fresh water displaces water...Ch. 14 - Three children, each of weight 356 N, make a log...Ch. 14 - GO In Fig. 14-39a, a rectangular block is...Ch. 14 - ILW A hollow spherical iron shell floats almost...Ch. 14 - GO A small solid ball is released from rest while...Ch. 14 - SSM WWW A hollow sphere of inner radius 8.0 cm and...Ch. 14 - Lurking alligators. An alligator waits for prey by...Ch. 14 - What fraction of the volume of an iceberg density...Ch. 14 - A Flotation device is in the shape of a right...Ch. 14 - When researchers find a reasonably complete fossil...Ch. 14 - A wood block mass 3.67 kg, density 600 kg/m3 is...Ch. 14 - GO An iron casting containing a number of cavities...Ch. 14 - GO Suppose that you release a small ball from rest...Ch. 14 - The volume of air space in the passenger...Ch. 14 - GO Figure 14-44 shows an iron ball suspended by...Ch. 14 - Canal effect. Figure 14-45 shows an anchored barge...Ch. 14 - Figure 14-46 shows two sections of an old pipe...Ch. 14 - SSM A garden hose with an internal diameter of 1.9...Ch. 14 - Two streams merge to form a river. One stream has...Ch. 14 - SSM Water is pumped steadily out of a flooded...Ch. 14 - GO The water flowing through a 1.9 cm inside...Ch. 14 - How much work is done by pressure in forcing 1.4...Ch. 14 - Suppose that two tanks, 1 and 2, each with a large...Ch. 14 - SSM A cylindrical tank with a large diameter is...Ch. 14 - The intake in Fig. 14-47 has cross-sectional area...Ch. 14 - SSM Water is moving with a speed of 5.0 m/s...Ch. 14 - Models of torpedoes are sometimes tested in a...Ch. 14 - ILW A water pipe having a 2.5 cm inside diameter...Ch. 14 - A pitot tube Fig. 14-48 is used to determine the...Ch. 14 - Prob. 63PCh. 14 - GO In Fig. 14-49, water flows through a horizontal...Ch. 14 - SSM WWW A venturi meter is used to measure the...Ch. 14 - Consider the venturi tube of Problem 65 and Fig....Ch. 14 - ILW In Fig. 14-51, the fresh water behind a...Ch. 14 - GO Fresh water flows horizontally from pipe...Ch. 14 - A liquid of density 900 kg/m3 flows through a...Ch. 14 - GO In Fig. 14-53, water flows steadily from the...Ch. 14 - Figure 14-54 shows a stream of water flowing...Ch. 14 - GO A very simplified schematic of the rain...Ch. 14 - About one-third of the body of a person floating...Ch. 14 - A simple open U-tube contains mercury. When 11.2...Ch. 14 - If a bubble in sparkling water accelerates upward...Ch. 14 - Suppose that your body has a uniform density of...Ch. 14 - Prob. 77PCh. 14 - Caught in an avalanche, a skier is fully submerged...Ch. 14 - An object hangs from a spring balance. The balance...Ch. 14 - In an experiment, a rectangular block with height...Ch. 14 - SSM Figure 14-30 shows a modified U-tube: the...Ch. 14 - What is the acceleration of a rising hot-air...Ch. 14 - Figure 14-56 shows a siphon, which is a device for...Ch. 14 - When you cough, you expel air at high speed...Ch. 14 - A tin can has a total volume of 1200 cm3 and a...Ch. 14 - The tension in a string holding a solid block...Ch. 14 - What is the minimum area in square meters of the...Ch. 14 - A 8.60 kg sphere of radius 6.22 cm is at a depth...Ch. 14 - a For seawater of density 1.03 g/cm3, find the...Ch. 14 - The sewage outlet of a house constructed on a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. A classic way to isolate thymidylate synthase—negative mutants of bacteria is to treat a growing culture wit...
Biochemistry: Concepts and Connections (2nd Edition)
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are part of a team in an engineering class that is working on a scale model of a new design for a life vest. You have been asked to find the mass of a piece of foam that will be used for flotation. Because the piece is too bulky to fit on your balance, you break it into two parts. You measure the mass of the first part as 128.3 0.3 g and the second part as 77.0 0.3 g. a. What are the maximum and minimum values for the total mass you might reasonably report? b. What is the best estimate for the total mass of the foam? Hint: Propagation of uncertainty is described in Appendix A.arrow_forwardAn inflated spherical beach ball with a radius of 0.3573 m and average density of 10.65 kg/m3 is being held under water in a pool by Janelle. The density of the water in the pool is 1000.0 kg/m3. When Janelle releases the ball, it begins to rise to the surface. If the drag coefficient of the ball in the water is 0.470 and the constant upward force on the ball is 1875 N, what will be the terminal speed of the ball as it rises? Ignore the effects of gravity on the ball.arrow_forward(a) A very powerful vacuum cleaner has a hose 2.86 cm in diameter. With the end of the hose placed perpendicularly on the flat face of a brick, what is the weight of the heaviest brick that the cleaner can lift? (b) What If? An octopus uses one sucker of diameter 2.86 cm on each of the two shells of a clam in an attempt to pull the shells apart. Find the greatest force the octopus can exert on a clamshell in salt water 32.3 m deep.arrow_forward
- A light hollow tube of 2.00 cm diameter and 1.0 m length is filled with tiny beads of different density. The resulting density distribution is linear, with the left end having a density of 2.4 g/cm3, and the right end having a density of 5.7 g/cm3. How far from the left end will be the center of mass (give answer in cm).arrow_forwardA spherical balloon filled with nitrogen is attached to a 2.5-m-long, 0.055-kg string. The balloon has radius 0.40 m. When released, it lifts a length h of the string when it comes to rest. Find h. Assume the mass of the balloon material is 0.251 kg.arrow_forwardA fuel pump sends gasoline from a car's fuel tank to the engine at a rate of 7.06x10-2 kg/s. The density of the gasoline is 730 kg/m3, and the radius of the fuel line is 2.20x10-3 m. What is the speed at which gasoline moves through the fuel line?arrow_forward
- A glass ball of radius 1.65 cm sits at the bottom of a container of milk that has a density of 1.03 g/cm3. The normal force on the ball from the container's lower surface has magnitude 8.03 × 10-2 N. What is the mass of the ball?arrow_forwardA uniform silver sphere and a uniform gold sphere have the same mass. What is the ratio of the radius of the silver sphere to the radius of the gold sphere?arrow_forwardA glass ball of radius 2.00 cm sits at the bottom of a container of milk that has a density of 1.03 g/cm3. The normal force on the ball from the container’s lower surface has magnitude 9.48 * 10-2 N. What is the mass of the ball?arrow_forward
- Assume a certain liquid, with density 1 300 kg/m3, exerts no friction force on spherical objects. A ball of mass 2.30 kg and radius 8.90 cm is dropped from rest into a deep tank of this liquid from a height of 2.10 m above the surface. (a) Find the speed at which the ball enters the liquid. m/s (b) Evaluate the magnitudes of the two forces that are exerted on the ball as it moves through the liquid. gravitational force buoyant force N (c) Explain why the ball moves down only a limited distance into the liquid. This answer has not been graded yet. Calculate this distance. liquid? (d) With what speed does the ball pop up out of m/s (e) How does the time interval Atun during which the ball moves from the surface down to its lowest point, compare with the time interval At., for the return trip between the same two points? O The down interval is greater. O The up interval is greater. O The two intervals are equal. (f) Now modify the model to suppose the liquid exerts a small friction force…arrow_forwardRecall that density is massdivided by volume A neutron star is the remnant of certain supernovae (explosions of giant stars). Typically, neutron stars are about 20 km in diameter and have about the same mass as our sun. What is a typical neutron star density in g>cm3?arrow_forwardA raindrop with a radius R= 1.2 mm falls from a cloud that is at height h = 1200 m above the ground. The drag coefficient C for the drop is 0.40. Assume that the drop is spherical throughout its fall. The density of water ρw is 1000 kg/m3, and the density of air ρa is 1.1 kg/m3. If you know that the raindrop reaches terminal speed after falling just a few meters. What is the terminal speed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY