FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 53P
Repeat Prob. 14-51, ignoring all minor losses. How important are the minor losses in this problem’ Discuss.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
BA4s6nknAPkVXhnUEg
rmResponse
Good Luck...
PROBLEM 1
Determine the following:
a. Enclosed Area
b. Perimeter of the thin walled tube
Given is a thin-walled tube with the following data:
Wall thickness-2mm
ABC is a sector with a radius of 50 mm
AOD & COD is a triangle
C. Shear flow
d. Shear stress
e. Angle of twist
Torque is 1000 N.m
Length of the thin walled tube is 0.5 m
Use G=24 GPa for aluminium
A
90
B
D
3R
PROBLEM 2
Determine the following:
a. Enclosed Area
b. Perimeter of the thin walled tube
c. Shear flow
d. Shear stress
Given is a thin-walled tube with the following data:
Wall thickness- 3mm
Torque is 900 N.m
Length of the thin walled tube is 1.2 m.
Use G=24 GPa for aluminium
e. Angle of twist
Ps
Xd
étv
W
answer should be k = 4316 N/m
None
Chapter 14 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 14 - What is the more common term for an...Ch. 14 - What the primary differences between fans,...Ch. 14 - List at least two common examples of fans, of...Ch. 14 - Discuss the primary difference between a porn...Ch. 14 - Explain why there is an “extra” term in the...Ch. 14 - For a turbine, discuss the difference between...Ch. 14 - Prob. 7CPCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10CP
Ch. 14 - There are three main categories of dynamic pumps....Ch. 14 - For each statement about cow cetrifugal the...Ch. 14 - Prob. 13CPCh. 14 - Consider flow through a water pump. For each...Ch. 14 - Write the equation that defines actual (available)...Ch. 14 - Consider a typical centrifugal liquid pump. For...Ch. 14 - Prob. 17CPCh. 14 - Consider steady, incompressible flow through two...Ch. 14 - Prob. 19CPCh. 14 - Prob. 20PCh. 14 - Suppose the pump of Fig. P1 4-19C is situated...Ch. 14 - Prob. 22PCh. 14 - Prob. 23EPCh. 14 - Consider the flow system sketched in Fig. PI 4-24....Ch. 14 - Prob. 25PCh. 14 - Repeat Prob. 14-25, but with a rough pipe-pipe...Ch. 14 - Consider the piping system of Fig. P14—24. with...Ch. 14 - The performance data for a centrifugal water pump...Ch. 14 - For the centrifugal water pump of Prob. 14-29,...Ch. 14 - Suppose the pump of Probs. 14-29 and 14-30 is used...Ch. 14 - Suppose you are looking into purchasing a water...Ch. 14 - The performance data of a water pump follow the...Ch. 14 - For the application at hand, the flow rate of...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - For the pump and piping system of Prob. 14-35E,...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - Suppose that the free surface of the inlet...Ch. 14 - Calculate the volume flow rate between the...Ch. 14 - Comparing the results of Probs. 14-39 and 14-43,...Ch. 14 - Prob. 45PCh. 14 - The performance data for a centrifugal water pump...Ch. 14 - Transform each column of the pump performance data...Ch. 14 - 14-51 A local ventilation system (a hood and duct...Ch. 14 - Prob. 52PCh. 14 - Repeat Prob. 14-51, ignoring all minor losses. How...Ch. 14 - Suppose the one- way of Fig. P14-51 malfunctions...Ch. 14 - A local ventilation system (a hood and duct...Ch. 14 - For the duct system and fan of Prob. 14-55E,...Ch. 14 - Repeat Prob. 14-55E, ignoring all minor losses....Ch. 14 - A self-priming centrifugal pump is used to pump...Ch. 14 - Repeat Prob. 14-60. but at a water temperature of...Ch. 14 - Repeat Prob. 14-60, but with the pipe diameter...Ch. 14 - Prob. 63EPCh. 14 - Prob. 64EPCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Prob. 68PCh. 14 - Prob. 69PCh. 14 - Two water pumps are arranged in Series. The...Ch. 14 - The same two water pumps of Prob. 14-70 are...Ch. 14 - Prob. 72CPCh. 14 - Name and briefly describe the differences between...Ch. 14 - Discuss the meaning of reverse swirl in reaction...Ch. 14 - Prob. 75CPCh. 14 - Prob. 76CPCh. 14 - Prob. 77PCh. 14 - Prob. 78PCh. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - Wind ( =1.204kg/m3 ) blows through a HAWT wind...Ch. 14 - Prob. 82PCh. 14 - Prob. 84CPCh. 14 - A Francis radial-flow hydroturbine has the...Ch. 14 - Prob. 87PCh. 14 - Prob. 88PCh. 14 - Prob. 89PCh. 14 - Prob. 90CPCh. 14 - Prob. 91CPCh. 14 - Discuss which dimensionless pump performance...Ch. 14 - Prob. 93CPCh. 14 - Prob. 94PCh. 14 - Prob. 95PCh. 14 - Prob. 96PCh. 14 - Prob. 97PCh. 14 - Prob. 98PCh. 14 - Prob. 99PCh. 14 - Prob. 100EPCh. 14 - Prob. 101PCh. 14 - Calculate the pump specific speed of the pump of...Ch. 14 - Prob. 103PCh. 14 - Prob. 104PCh. 14 - Prob. 105PCh. 14 - Prob. 106PCh. 14 - Prob. 107EPCh. 14 - Prob. 108PCh. 14 - Prob. 109PCh. 14 - Prob. 110PCh. 14 - Prove that the model turbine (Prob. 14-109) and...Ch. 14 - Prob. 112PCh. 14 - Prob. 113PCh. 14 - Prob. 114PCh. 14 - Prob. 115CPCh. 14 - Prob. 116CPCh. 14 - Prob. 117CPCh. 14 - Prob. 118PCh. 14 - For two dynamically similar pumps, manipulate the...Ch. 14 - Prob. 120PCh. 14 - Prob. 121PCh. 14 - Prob. 122PCh. 14 - Calculate and compare the turbine specific speed...Ch. 14 - Prob. 124PCh. 14 - Prob. 125PCh. 14 - Prob. 126PCh. 14 - Prob. 127PCh. 14 - Prob. 128PCh. 14 - Prob. 129PCh. 14 - Prob. 130PCh. 14 - Prob. 131PCh. 14 - Prob. 132PCh. 14 - Prob. 133PCh. 14 - Prob. 134PCh. 14 - Prob. 135PCh. 14 - A two-lobe rotary positive-displacement pump moves...Ch. 14 - Prob. 137PCh. 14 - Prob. 138PCh. 14 - Prob. 139PCh. 14 - Prob. 140PCh. 14 - Which choice is correct for the comparison of the...Ch. 14 - Prob. 142PCh. 14 - In a hydroelectric power plant, water flows...Ch. 14 - Prob. 144PCh. 14 - Prob. 145PCh. 14 - Prob. 146PCh. 14 - Prob. 147PCh. 14 - Prob. 148PCh. 14 - Prob. 149PCh. 14 - Prob. 150PCh. 14 - Prob. 151P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An 8 cm diameter hydraulic cylinder has a 4 cm diameter rod. If the cylinder receives flow at 100 LPM and 12 MPa, find the extension and retraction speeds and extension and retraction load carrying capacities.arrow_forward6 m 6 m Elbow 6 m 3 m. Activate Wind Goto Sectines1 15 m A fluid is pumped at a rate of 0.00156 m/s through a 0.025-m-diameter pipe to fill a 9°C 020arrow_forwardA kitchen chimney, made of HINDWARE with exhaust pipe dia. of 90 cm supplies exhaust gas having flow rate of 1200 80 m3/hour. Length of exhaust pipe is 5m. Now BAJAJ Company wants to design a chimney to crater same flow rate but rectangular type with aspect ratio of 1.5. The length of exhaust pipes for both cases is assumed to be 5m. Also consider same friction factor for both the pipes as 0.182.Determine (i) the pressure drop for the HINDWARE duct. (ii) Considering the same pressure drop for the BAJAJ duct, determine its sides.arrow_forward
- i need the answer quicklyarrow_forwardUse= Resolving of Example (1-3) Two reservoirs with a difference in elevation of 15 m are connected by the three pipes in series. The pipes are 300 m long of diameter 30 cm, 150 m long of 20 cm diameter, and 200 m long of 25 cm diameter respectively. The friction factors for the three pipes are, respectively, 0.018, 0-020 and 0-019, and which account for friction and all losses. Further the contractions and expansions are sudden. Determine the flow rate in l/s. The loss co-efficient for sudden contraction from dia. 30 cm to 20 cm = 0.24. Le-L₂ (D.) ² Le = L3 (D₁) ² 5 D3 LT. L₁ + L₂ ( D₁ ) ³ + L3 (D²₂) ³ 5 5 D3arrow_forwardExample (1-2): A pump delivers water from a tank A (water surface elevation =110 m) to tank B (water surface elevation = 170 m). The suction pipe is 45 m long (friction factor, f = 0-024) and 35 cm in diameter. The delivery pipe is 950 m long (f = 0·022) and 25 cm in diameter. The head discharge relationship for the pump is given by Hp = (90 – 8000 Q²), where Hp is in metres and Q in m³/s. Calculate: (i) The discharge in the pipeline. (ii) The power delivered by the pump.arrow_forward
- Answer the following with (True) or (False): 1- The head loss in box culverts varied linearly with the Manning coefficient. 2- In the sliding gate design, the plate considered as a beam simply supported on tow wall. 3- The total head in open flow is equal to velocity head added to specific energy. 4- The head losses in the syphon decreased with increasing of bend angle. 5- In the floor design, Bligh method is most economic method.arrow_forwardKL „Pump Reservoir 80m Well Figure 1 Your family has a small farm which needs to be watered by pumping water from a nearby well. The water needs to be continuously supplied at a rate of 0.003 m³/s through 6-cm internal diameter cast iron pipcs. The total required length of piping is measured to be 350m, with an angle valve fully open (KLvalve), a sharp-edged entrance (KLent), a rounded exit (KLexit) and ten threaded 90° bends (KLelbow). Take the efficiency of the pump to be 0.75, density and viscosity of water to be 1000 kg/m³ and 0.00131kg/m.s, respectively. Use Moody diagram for friction factor. i. Find the total head loss, httotal given that the pipe diameter is constant. ii. Determine the rated power of the pump that needs to be purchased, in kW. iii. Propose one practical way to reduce the total head loss, hL.totalarrow_forwardA getter screen consists of a cylinder of length l = 0.3m, diameter d=0.25m and its circular based plate. The getter screen is cooled with liquid nitrogen and coated completely with deposited titanium providing a constantly fresh surface. Sticking probability s=1 for N2 and mean thermal velocity = 470m/s. Find the pumping speed.arrow_forward
- please i want the answer of these 2 quetionsarrow_forward2.1 Draught produced by stack 30 meters high for maximum rate of discharge of hot gases through-it at 27°C is (a) 17.65 mm H,0 (b) 35.5 mm H,0 (c) 30 mm H,0 (d) Not possibte.to find with the dataarrow_forward8-4 Derive the following equations: (aF 0 (a) F = U + T tio (b) Су (OA8) ) (reversible process); (c) H = G – TOT)ati ilidsse Ioadh 1ol jedb sbul - bod (d) C, = -7(). -T) (reversible process);arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY