FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 131P
To determine
The ratio of the required brake horse power of pump with
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please answer
A centrifugal pump pumps water at a flow rate of 7 m³/s to a height of 10 m. If the pump works at the best efficiency point, find the pump impeller diameter, pump speed, the best efficiency value of the pump, the head at the best efficiency value, and the specific speed of the pump, given that CQ=0.15 CH=6 CP=0.75.
Show the complete solution for this problem
Chapter 14 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 14 - What is the more common term for an...Ch. 14 - What the primary differences between fans,...Ch. 14 - List at least two common examples of fans, of...Ch. 14 - Discuss the primary difference between a porn...Ch. 14 - Explain why there is an “extra” term in the...Ch. 14 - For a turbine, discuss the difference between...Ch. 14 - Prob. 7CPCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10CP
Ch. 14 - There are three main categories of dynamic pumps....Ch. 14 - For each statement about cow cetrifugal the...Ch. 14 - Prob. 13CPCh. 14 - Consider flow through a water pump. For each...Ch. 14 - Write the equation that defines actual (available)...Ch. 14 - Consider a typical centrifugal liquid pump. For...Ch. 14 - Prob. 17CPCh. 14 - Consider steady, incompressible flow through two...Ch. 14 - Prob. 19CPCh. 14 - Prob. 20PCh. 14 - Suppose the pump of Fig. P1 4-19C is situated...Ch. 14 - Prob. 22PCh. 14 - Prob. 23EPCh. 14 - Consider the flow system sketched in Fig. PI 4-24....Ch. 14 - Prob. 25PCh. 14 - Repeat Prob. 14-25, but with a rough pipe-pipe...Ch. 14 - Consider the piping system of Fig. P14—24. with...Ch. 14 - The performance data for a centrifugal water pump...Ch. 14 - For the centrifugal water pump of Prob. 14-29,...Ch. 14 - Suppose the pump of Probs. 14-29 and 14-30 is used...Ch. 14 - Suppose you are looking into purchasing a water...Ch. 14 - The performance data of a water pump follow the...Ch. 14 - For the application at hand, the flow rate of...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - For the pump and piping system of Prob. 14-35E,...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - Suppose that the free surface of the inlet...Ch. 14 - Calculate the volume flow rate between the...Ch. 14 - Comparing the results of Probs. 14-39 and 14-43,...Ch. 14 - Prob. 45PCh. 14 - The performance data for a centrifugal water pump...Ch. 14 - Transform each column of the pump performance data...Ch. 14 - 14-51 A local ventilation system (a hood and duct...Ch. 14 - Prob. 52PCh. 14 - Repeat Prob. 14-51, ignoring all minor losses. How...Ch. 14 - Suppose the one- way of Fig. P14-51 malfunctions...Ch. 14 - A local ventilation system (a hood and duct...Ch. 14 - For the duct system and fan of Prob. 14-55E,...Ch. 14 - Repeat Prob. 14-55E, ignoring all minor losses....Ch. 14 - A self-priming centrifugal pump is used to pump...Ch. 14 - Repeat Prob. 14-60. but at a water temperature of...Ch. 14 - Repeat Prob. 14-60, but with the pipe diameter...Ch. 14 - Prob. 63EPCh. 14 - Prob. 64EPCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Prob. 68PCh. 14 - Prob. 69PCh. 14 - Two water pumps are arranged in Series. The...Ch. 14 - The same two water pumps of Prob. 14-70 are...Ch. 14 - Prob. 72CPCh. 14 - Name and briefly describe the differences between...Ch. 14 - Discuss the meaning of reverse swirl in reaction...Ch. 14 - Prob. 75CPCh. 14 - Prob. 76CPCh. 14 - Prob. 77PCh. 14 - Prob. 78PCh. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - Wind ( =1.204kg/m3 ) blows through a HAWT wind...Ch. 14 - Prob. 82PCh. 14 - Prob. 84CPCh. 14 - A Francis radial-flow hydroturbine has the...Ch. 14 - Prob. 87PCh. 14 - Prob. 88PCh. 14 - Prob. 89PCh. 14 - Prob. 90CPCh. 14 - Prob. 91CPCh. 14 - Discuss which dimensionless pump performance...Ch. 14 - Prob. 93CPCh. 14 - Prob. 94PCh. 14 - Prob. 95PCh. 14 - Prob. 96PCh. 14 - Prob. 97PCh. 14 - Prob. 98PCh. 14 - Prob. 99PCh. 14 - Prob. 100EPCh. 14 - Prob. 101PCh. 14 - Calculate the pump specific speed of the pump of...Ch. 14 - Prob. 103PCh. 14 - Prob. 104PCh. 14 - Prob. 105PCh. 14 - Prob. 106PCh. 14 - Prob. 107EPCh. 14 - Prob. 108PCh. 14 - Prob. 109PCh. 14 - Prob. 110PCh. 14 - Prove that the model turbine (Prob. 14-109) and...Ch. 14 - Prob. 112PCh. 14 - Prob. 113PCh. 14 - Prob. 114PCh. 14 - Prob. 115CPCh. 14 - Prob. 116CPCh. 14 - Prob. 117CPCh. 14 - Prob. 118PCh. 14 - For two dynamically similar pumps, manipulate the...Ch. 14 - Prob. 120PCh. 14 - Prob. 121PCh. 14 - Prob. 122PCh. 14 - Calculate and compare the turbine specific speed...Ch. 14 - Prob. 124PCh. 14 - Prob. 125PCh. 14 - Prob. 126PCh. 14 - Prob. 127PCh. 14 - Prob. 128PCh. 14 - Prob. 129PCh. 14 - Prob. 130PCh. 14 - Prob. 131PCh. 14 - Prob. 132PCh. 14 - Prob. 133PCh. 14 - Prob. 134PCh. 14 - Prob. 135PCh. 14 - A two-lobe rotary positive-displacement pump moves...Ch. 14 - Prob. 137PCh. 14 - Prob. 138PCh. 14 - Prob. 139PCh. 14 - Prob. 140PCh. 14 - Which choice is correct for the comparison of the...Ch. 14 - Prob. 142PCh. 14 - In a hydroelectric power plant, water flows...Ch. 14 - Prob. 144PCh. 14 - Prob. 145PCh. 14 - Prob. 146PCh. 14 - Prob. 147PCh. 14 - Prob. 148PCh. 14 - Prob. 149PCh. 14 - Prob. 150PCh. 14 - Prob. 151P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water recirculates at a volume flow rate of 0.4524 ft3/min from the blade outlet to the impeller, and shaft sealing losses are negligible. A centrifugal pump has a hydraulic efficiency of 95% and a mechanical efficiency of 93%, respectively. Calculate the pump efficiency in percent if the pump delivers water at a flow rate of 12 ft3/min.arrow_forwardA centrifugal pump delivers 3000,000 liters per hour of water to a pressurized thank whose pressure is 280 kPa. The source of water is 5 meters below the pump. The diameter of the suction pipe is 300 mm and the discharge pipe is 250 mm. calculate the KW rating of the driving motor assuming the pump efficiency to be 72%. (answer is 13.16 KW) with drawing.arrow_forwardWater at 20°C is being pumped from tank 1 to tank 2 with given conditions. Calculate thepower of pump used in the system. (Both tanks are open to atmosphere)arrow_forward
- A centrifugal pump having an overall efficiency of 75%, delivers 1850 liters of water per minute to a height of 20 m through a pipe 10 cm diameter and 100 m long. If f=0.012, calculate the hp to drive the pump.arrow_forwardA centrifugal pump delivers 3000,000 liters per hour of water to a pressurized tank whose pressure is 280 kPa. The source of water is 5 meters below the pump. The diameter of the suction pipe is 300 mm and the discharged pipe is 250 mm. calculate the KW rating of the driving motor assuming the pump efficiency to be 72%.(answer is 13.16 KW)arrow_forwardProblem 1(5): A centrifugal pump transports water between two reservoirs. The pump has an outer diameter of 15 cm, an inner diameter of 8 cm, and a blade width of 2 cm and operates at 1750 rpm. If the water enters the pump axially at ẞ₁ = 45º¸ compute the volume flow rate, Problem 2(10): In the pump of problem 1, the water exits at B₂ 65° when the pump is driven at 1750 rpm. = Compute the minimum power required by the pump?arrow_forward
- A centrifugal pump is running at 1000 r.p.m. The outlet vane angle of the impeller is 30° and velocity of flow at outlet is 3 m/s. The pump is working against a total head of 30 m and the discharge through the pump is 0.3 m³/s. If the manometric efficiency of the pump is 75%, determine: (i) the diameter of the impeller, and (ii) the width of the impeller at outletarrow_forward2. A pump draws water from a lake delivered to a height of 50 meters above the lake and encounters 15 meters of headloss. Determine the pump power requirement in Kilo-Watts to deliver a constant supply of 500 Liters per second? The correct answer has a margin of 1 from exact answer. Velocity head is neglected.arrow_forwardAn internal gear pump must deliver 18 litres per minute hydraulic fluid to a system at a pressure 22 MPa. The mechanical efficiency of the pump is 89% and the volumetric efficiency is 84%. The pump must be driven at 1650 r/min. Determine the input power to the pump and the displacement volume pump.arrow_forward
- A reaction turbine has guide vanes at an angle of 30° and the runner blades make an angle of 80° relative to the tangent at inlet. The blades width at the inlet is 4 of the outer diameter. The water does not have any tangential velocity at the outlet. The head is 25 m and the rotational speed of the runner is 16.67 rotations per second. The turbine efficiency is 88 %. Determine the turbine runner diameter at the inlet and the power developed.arrow_forwardanswer first item onlyarrow_forwardA centrifugal pump is discharging 900 gpm and which operates at 1800 rpm against a head of 120 ft and maximum efficiency of 91%. If this pump is modified to operate at 1200 rpm, assuming its efficiency remains constant, determine its discharge, the theoretical head it imparts to the liquid and the power input to the pump.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license