FLUID MECHANICS FUNDAMENTALS+APPS
FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 33P

The performance data of a water pump follow the curve fit H a v a i l a b l e = H 0 a V ˙ 2 . where the pump's shutoff head H 0 = 0.76 m , coefficient a = 0.453 m / ( L p m ) 2 the units of pump head H are meters, and the units of V ˙ are liters per minute (Lpm). The pump is used to pump water from one large reservoir to another large reservoir at a higher elevation. The free surfaces of both reservoirs are exposed to atmospheric pressure. The system curve simplifies to H a v a i l a b l e = ( z 2 z 1 ) + b V ˙ 2 , where elevation difference z 2 z 1 = 3.52 m , and coefficient b = 0.0261m/(Lpm)2. Calculate the operating point Of the pump ( V ˙ o p e r a t i n g and H o p e r a t i n g ) in appropriate units (Lpm and meters, respectively).

Blurred answer
Students have asked these similar questions
a) Develop an equation for the head (in ft) developed by the pump described by the chartas a function of flow rate (in gpm) when the pump uses a 9 ¾” impeller. b) Develop an equation for the pump efficiency as a function of flow rate (gpm) when the pump uses a 9 ¾” impeller.
Complete Answer with Illustration, Thank you
The standard atmosphere in meters of gasoline (Y = 6660 N/m3) is nearest take Patm= 101300 N/m2 * O 24.9 m O 15.2 m O 18.3 m O 21.2 m A cubic meter of a liquid has a weight of 9800 N at a location where g = 9.79 m/s2. What is its weight at a location where g 9.83 m/s2? * O 9780 N O 9840 N O 9820 N O 9800 N The pressure at a point where the gage pressure is 70 cm of water is nearest take Patm =100 KPa. * O 169 kPa O 69 kPa O 107 kPa O 30 kPa Calculate the weight of a body that occupies 200 m3 if its specific volume is 10 m3/kg. * O 132 N O 196 N O 20 N O 921 N 10-kg body falls from rest, with negligible interaction with its Surroundings (no friction). Determine its velocity after it falls 5 m. * O 9.9 m/s 19.8 m/s O 12.8 m/s O 15.2 m/s D

Chapter 14 Solutions

FLUID MECHANICS FUNDAMENTALS+APPS

Ch. 14 - There are three main categories of dynamic pumps....Ch. 14 - For each statement about cow cetrifugal the...Ch. 14 - Prob. 13CPCh. 14 - Consider flow through a water pump. For each...Ch. 14 - Write the equation that defines actual (available)...Ch. 14 - Consider a typical centrifugal liquid pump. For...Ch. 14 - Prob. 17CPCh. 14 - Consider steady, incompressible flow through two...Ch. 14 - Prob. 19CPCh. 14 - Prob. 20PCh. 14 - Suppose the pump of Fig. P1 4-19C is situated...Ch. 14 - Prob. 22PCh. 14 - Prob. 23EPCh. 14 - Consider the flow system sketched in Fig. PI 4-24....Ch. 14 - Prob. 25PCh. 14 - Repeat Prob. 14-25, but with a rough pipe-pipe...Ch. 14 - Consider the piping system of Fig. P14—24. with...Ch. 14 - The performance data for a centrifugal water pump...Ch. 14 - For the centrifugal water pump of Prob. 14-29,...Ch. 14 - Suppose the pump of Probs. 14-29 and 14-30 is used...Ch. 14 - Suppose you are looking into purchasing a water...Ch. 14 - The performance data of a water pump follow the...Ch. 14 - For the application at hand, the flow rate of...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - For the pump and piping system of Prob. 14-35E,...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - Suppose that the free surface of the inlet...Ch. 14 - Calculate the volume flow rate between the...Ch. 14 - Comparing the results of Probs. 14-39 and 14-43,...Ch. 14 - Prob. 45PCh. 14 - The performance data for a centrifugal water pump...Ch. 14 - Transform each column of the pump performance data...Ch. 14 - 14-51 A local ventilation system (a hood and duct...Ch. 14 - Prob. 52PCh. 14 - Repeat Prob. 14-51, ignoring all minor losses. How...Ch. 14 - Suppose the one- way of Fig. P14-51 malfunctions...Ch. 14 - A local ventilation system (a hood and duct...Ch. 14 - For the duct system and fan of Prob. 14-55E,...Ch. 14 - Repeat Prob. 14-55E, ignoring all minor losses....Ch. 14 - A self-priming centrifugal pump is used to pump...Ch. 14 - Repeat Prob. 14-60. but at a water temperature of...Ch. 14 - Repeat Prob. 14-60, but with the pipe diameter...Ch. 14 - Prob. 63EPCh. 14 - Prob. 64EPCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Prob. 68PCh. 14 - Prob. 69PCh. 14 - Two water pumps are arranged in Series. The...Ch. 14 - The same two water pumps of Prob. 14-70 are...Ch. 14 - Prob. 72CPCh. 14 - Name and briefly describe the differences between...Ch. 14 - Discuss the meaning of reverse swirl in reaction...Ch. 14 - Prob. 75CPCh. 14 - Prob. 76CPCh. 14 - Prob. 77PCh. 14 - Prob. 78PCh. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - Wind ( =1.204kg/m3 ) blows through a HAWT wind...Ch. 14 - Prob. 82PCh. 14 - Prob. 84CPCh. 14 - A Francis radial-flow hydroturbine has the...Ch. 14 - Prob. 87PCh. 14 - Prob. 88PCh. 14 - Prob. 89PCh. 14 - Prob. 90CPCh. 14 - Prob. 91CPCh. 14 - Discuss which dimensionless pump performance...Ch. 14 - Prob. 93CPCh. 14 - Prob. 94PCh. 14 - Prob. 95PCh. 14 - Prob. 96PCh. 14 - Prob. 97PCh. 14 - Prob. 98PCh. 14 - Prob. 99PCh. 14 - Prob. 100EPCh. 14 - Prob. 101PCh. 14 - Calculate the pump specific speed of the pump of...Ch. 14 - Prob. 103PCh. 14 - Prob. 104PCh. 14 - Prob. 105PCh. 14 - Prob. 106PCh. 14 - Prob. 107EPCh. 14 - Prob. 108PCh. 14 - Prob. 109PCh. 14 - Prob. 110PCh. 14 - Prove that the model turbine (Prob. 14-109) and...Ch. 14 - Prob. 112PCh. 14 - Prob. 113PCh. 14 - Prob. 114PCh. 14 - Prob. 115CPCh. 14 - Prob. 116CPCh. 14 - Prob. 117CPCh. 14 - Prob. 118PCh. 14 - For two dynamically similar pumps, manipulate the...Ch. 14 - Prob. 120PCh. 14 - Prob. 121PCh. 14 - Prob. 122PCh. 14 - Calculate and compare the turbine specific speed...Ch. 14 - Prob. 124PCh. 14 - Prob. 125PCh. 14 - Prob. 126PCh. 14 - Prob. 127PCh. 14 - Prob. 128PCh. 14 - Prob. 129PCh. 14 - Prob. 130PCh. 14 - Prob. 131PCh. 14 - Prob. 132PCh. 14 - Prob. 133PCh. 14 - Prob. 134PCh. 14 - Prob. 135PCh. 14 - A two-lobe rotary positive-displacement pump moves...Ch. 14 - Prob. 137PCh. 14 - Prob. 138PCh. 14 - Prob. 139PCh. 14 - Prob. 140PCh. 14 - Which choice is correct for the comparison of the...Ch. 14 - Prob. 142PCh. 14 - In a hydroelectric power plant, water flows...Ch. 14 - Prob. 144PCh. 14 - Prob. 145PCh. 14 - Prob. 146PCh. 14 - Prob. 147PCh. 14 - Prob. 148PCh. 14 - Prob. 149PCh. 14 - Prob. 150PCh. 14 - Prob. 151P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license