PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 51P
The 1000-lb elevator is hoisted by the pulley system and motor M. If the motor exerts a constant force of 500 lb on the cable, determine the power that must be supplied to the motor at the instant the load has been hoisted s = 15 ft starting from rest. The motor has an efficiency of ɛ = 0.65.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The elevator E and its freight have a total mass of 400kg. Hoisting is provided by the motor M and the 150-kg block C. If the motor has an efficiency of ε =0.85, determine the power that must be supplied to themotor when the elevator is hoisted upwards at aconstant speed of VE = 4 m/s.
Please show every single step of the process and the free body diagrams thanks
The 50-1b block rests on the smooth surface. A force F = (40+s) Ib, which s isin ft, acts on the block in the direction shown. If the spring is originally unstretched (s = 0) and the block is at rest, determine the power developed by the force the instant theblock has moved s = 1.5 ft.F30°k = 20 lb/ft
The 300-kg bar B, originally at rest, is being towed over a series of small
rollers. Determine the force in the cable when t = 5s, if the motor M is
drawing in the cable for a short time at a rate of v = (0.47²) m/s, where t is in
seconds (0 <= t<= 6 s). How far does the bar move in 5s? Neglect the mass
of the cable, pulley, and the rollers.
M
B
Chapter 14 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 14 - Prob. 1FPCh. 14 - If the motor exerts a constant force of 300 N on...Ch. 14 - If the motor exerts a force of F = (600 + 2s2) N...Ch. 14 - The 1.8-Mg dragster is traveling at 125 m/s when...Ch. 14 - When s = 0.5 m, the spring is unstretched and the...Ch. 14 - The 5-lb collar is pulled by a cord that passes...Ch. 14 - Prob. 2PCh. 14 - The 100-kg crate is subjected to the forces shown....Ch. 14 - Determine the required height h of the roller...Ch. 14 - When the driver applies the brakes of a light...
Ch. 14 - Prob. 7PCh. 14 - The force F, acting in a constant direction on the...Ch. 14 - The 2-lb brick slides down a smooth roof, such...Ch. 14 - The two blocks A and B have weights WA = 60 lb and...Ch. 14 - A small box of mass m is given a speed of v=14gr...Ch. 14 - Prob. 18PCh. 14 - If the cord is subjected to a constant force of F=...Ch. 14 - The crash cushion for a highway barrier consists...Ch. 14 - The 25-lb block has an initial speed of v0 = 10...Ch. 14 - At a given instant the 10-lb block A is moving...Ch. 14 - Prob. 25PCh. 14 - The catapulting mechanism is used to propel the...Ch. 14 - Prob. 27PCh. 14 - Prob. 31PCh. 14 - When the 150-lb skier is at point A he has a speed...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - If the contact surface between the 20-kg block and...Ch. 14 - Prob. 8FPCh. 14 - Prob. 9FPCh. 14 - Prob. 10FPCh. 14 - Prob. 11FPCh. 14 - Prob. 12FPCh. 14 - The jeep has a weight of 2500 lb and an engine...Ch. 14 - Determine the power Input for a motor necessary to...Ch. 14 - An automobile having a mass of 2 Mg travels up a 7...Ch. 14 - Prob. 45PCh. 14 - To dramatize the loss of energy in an automobile,...Ch. 14 - Escalator steps move with a constant speed of 0.6...Ch. 14 - Prob. 48PCh. 14 - The 1000-lb elevator is hoisted by the pulley...Ch. 14 - The sports car has a mass of 2.3 Mg, and while it...Ch. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - The 50-lb block rests on the rough surface for...Ch. 14 - The 2-kg pendulum bob is released from rest when...Ch. 14 - Prob. 14FPCh. 14 - Prob. 15FPCh. 14 - Prob. 16FPCh. 14 - The 75-lb block is released from rest 5 ft above...Ch. 14 - Prob. 18FPCh. 14 - The girl has a mass of 40 kg and center of mass at...Ch. 14 - The 30-lb block A is placed on top of two nested...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - Prob. 71PCh. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - Prob. 76PCh. 14 - The roller coaster car having a mass m is released...Ch. 14 - The spring has a stiffness k = 200 N/m and an...Ch. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - When s = 0, the spring on the firing mechanism is...Ch. 14 - If the mass of the earth is Me, show that the...Ch. 14 - A rocket of mass m is fired vertically from the...Ch. 14 - The 4-kg smooth collar has a speed of 3 m/s when...Ch. 14 - Prob. 85PCh. 14 - Prob. 87PCh. 14 - Prob. 90PCh. 14 - The roller coaster car has a speed of 15 ft/s when...Ch. 14 - Prob. 1RPCh. 14 - The small 2-lb collar starting from rest at A...Ch. 14 - Prob. 3RPCh. 14 - Prob. 4RPCh. 14 - Prob. 5RPCh. 14 - Prob. 6RPCh. 14 - Prob. 7RPCh. 14 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The man pushes the 20 lbm crate with a force of F = 150 lbf and with an angle of 45 deg fromhorizontal. Determine the power (hp) supplied by the man when t = 4 seconds. The coefficient of kineticfriction between the floor and the crate is u k= 0.2. Initially the create is at rest.arrow_forwardPlease draw a free-body diagram, the kinetic diagram and use Newton’s 2nd law to solve.arrow_forwardThe 925-kg motorized unit A is designed to raise and lower the 615-kg bucket B of concrete. Determine the average force R which supports unit A during the 5.9 seconds required to slow the descent of the bucket from 4.6 m/s to 0.9 m/s. Analyze the entire system as a unit without finding the tension in the cable. Answer: R = i kNarrow_forward
- The 935-kg motorized unit A is designed to raise and lower the 580-kg bucket B of concrete. Determine the average force R which supports unit A during the 5.2 seconds required to slow the descent of the bucket from 4.4 m/s to 0.9 m/s. Analyze the entire system as a unit without finding the tension in the cable. B Answer: R = i kNarrow_forwardThe 50-kg crate is hoisted up the 30o incline by the pulley system and motor M. If the crate starts from rest and by constant acceleration attains a speed of 6.4 m/s after traveling 18.1 m along the plane, determine the power in kW that must be supplied to the motor at this instant. Neglect friction along the plane. The motor has an efficiency ϵ = 0.78.arrow_forwardHow to apply energy equation here . please include diagram. Don't use Artificial intelligence tools.arrow_forward
- The 56.28 kg crate is hoisted up the 0 = 27° incline by the pulley system and motor M. If the crate starts from rest and, by constant acceleration, attains a speed of 8.17 m/s after traveling 7.84 m along the plane, determine the supplied power to the motor if the crate has moved 8 m and the coefficient of kinetic friction between the plane and the crate is Hk = 0.3. Neglect friction along the plane. The motor has an efficiency of 0.691. Marrow_forwardA block initially at rest at the top slides down along the smooth cylindrical surface. If the attached spring has a stiffness k = 2 lb/ft, determine its unstretched length so that it does not allow the 6 lb block to leave the surface until 8 = 60° www 2 ft www/www. N k = 2 lb/ftarrow_forwardh 2. The roller coaster car has a mass of 700 kg, including its passenger. If it is released from rest at the top of the hill A, determine the minimum height h of the hill crest so that the car travels around both inside the loops without leaving the track. Neglect friction, the mass of the wheels, and the size of the car. Take pB = 7.5 m and pC=5 m. 15 m B 10 m Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY