PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 3RP
To determine
The speed of the block when it slides off
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the angle 0 and the tension in the cord when the speed of the sphere is 20 ft/s.
The sphere has a weight of 40 lb and its speed is 12 ft/s at the instant it is at position A
(horizontally aligned with the pulley P). Treat the sphere as a particle.
Palley P
5ft
|
B
Tension in cord, T =
Angle at position B, when vg is 20 ft/s, 0 =
in degrees
r= 0.3 (1 + cos 0) m
500 N/m
The 3-kg collar slides along the smooth rod after being
nudged from rest at A, and travels along the rod to
pass point B.
Given that the free length of the spring is 100 mm and
that r is the actual length of the spring:
Draw Free Body Diagrams for the collar at position
A and at position B.
The 180-g slider has a speed v= 1.4 m/s as it passes point A of the smooth guide, which lies in a horizontal plane. Determine the
magnitude R of the force which the guide exerts on the slider (a) just before it passes point A of the guide and (b) as it passes point B.
Answers:
(a) R₂ =
(b) RB =
i
i
-200 mm
B
N
N
Chapter 14 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 14 - Prob. 1FPCh. 14 - If the motor exerts a constant force of 300 N on...Ch. 14 - If the motor exerts a force of F = (600 + 2s2) N...Ch. 14 - The 1.8-Mg dragster is traveling at 125 m/s when...Ch. 14 - When s = 0.5 m, the spring is unstretched and the...Ch. 14 - The 5-lb collar is pulled by a cord that passes...Ch. 14 - Prob. 2PCh. 14 - The 100-kg crate is subjected to the forces shown....Ch. 14 - Determine the required height h of the roller...Ch. 14 - When the driver applies the brakes of a light...
Ch. 14 - Prob. 7PCh. 14 - The force F, acting in a constant direction on the...Ch. 14 - The 2-lb brick slides down a smooth roof, such...Ch. 14 - The two blocks A and B have weights WA = 60 lb and...Ch. 14 - A small box of mass m is given a speed of v=14gr...Ch. 14 - Prob. 18PCh. 14 - If the cord is subjected to a constant force of F=...Ch. 14 - The crash cushion for a highway barrier consists...Ch. 14 - The 25-lb block has an initial speed of v0 = 10...Ch. 14 - At a given instant the 10-lb block A is moving...Ch. 14 - Prob. 25PCh. 14 - The catapulting mechanism is used to propel the...Ch. 14 - Prob. 27PCh. 14 - Prob. 31PCh. 14 - When the 150-lb skier is at point A he has a speed...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - If the contact surface between the 20-kg block and...Ch. 14 - Prob. 8FPCh. 14 - Prob. 9FPCh. 14 - Prob. 10FPCh. 14 - Prob. 11FPCh. 14 - Prob. 12FPCh. 14 - The jeep has a weight of 2500 lb and an engine...Ch. 14 - Determine the power Input for a motor necessary to...Ch. 14 - An automobile having a mass of 2 Mg travels up a 7...Ch. 14 - Prob. 45PCh. 14 - To dramatize the loss of energy in an automobile,...Ch. 14 - Escalator steps move with a constant speed of 0.6...Ch. 14 - Prob. 48PCh. 14 - The 1000-lb elevator is hoisted by the pulley...Ch. 14 - The sports car has a mass of 2.3 Mg, and while it...Ch. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - The 50-lb block rests on the rough surface for...Ch. 14 - The 2-kg pendulum bob is released from rest when...Ch. 14 - Prob. 14FPCh. 14 - Prob. 15FPCh. 14 - Prob. 16FPCh. 14 - The 75-lb block is released from rest 5 ft above...Ch. 14 - Prob. 18FPCh. 14 - The girl has a mass of 40 kg and center of mass at...Ch. 14 - The 30-lb block A is placed on top of two nested...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - Prob. 71PCh. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - Prob. 76PCh. 14 - The roller coaster car having a mass m is released...Ch. 14 - The spring has a stiffness k = 200 N/m and an...Ch. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - When s = 0, the spring on the firing mechanism is...Ch. 14 - If the mass of the earth is Me, show that the...Ch. 14 - A rocket of mass m is fired vertically from the...Ch. 14 - The 4-kg smooth collar has a speed of 3 m/s when...Ch. 14 - Prob. 85PCh. 14 - Prob. 87PCh. 14 - Prob. 90PCh. 14 - The roller coaster car has a speed of 15 ft/s when...Ch. 14 - Prob. 1RPCh. 14 - The small 2-lb collar starting from rest at A...Ch. 14 - Prob. 3RPCh. 14 - Prob. 4RPCh. 14 - Prob. 5RPCh. 14 - Prob. 6RPCh. 14 - Prob. 7RPCh. 14 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The freight cars A and B have a mass of 20 Mg and 15 Mg, respectively. Determine the velocity of A after collision if the cars collide and rebound, such that B moves to the right with a speed of 2 m>s. If A and B are in contact for 0.5 s. find the average impulsive force which acts between them. 3 m/s A 1.5 m/s LUpload Choose a Filearrow_forwardThe 400-kg mine car is hoisted up the incline using the cable and motor M. For a short time, the force in the cable is F = (3500 t2) N, where t is in seconds. ( Figure 1) Figure 17 7/8 15 ₁ = 2 m/s 1 of 1 Part A If the car has an initial velocity v₁ = 2m/s at s = 0 and t = 0, determine the distance it moves up the plane when t = 3 s. Express your answer to three significant figures and include the appropriate units. 8 = Value Submit HÅ Provide Feedback Request Answer P Pearson wwwww Units ? Next >arrow_forward4. The 5-lb collar slides on the smooth rod, so that when it is at A is has a speed of 10 ft/s. If the spring to which it is attached has an unstretched length of 3 ft and a stiffness of k = 16 lb/ft, determine the normal force on the collar and the acceleration of the collar at this instant. 10 ft/s cy =8-arrow_forward
- 3/98 The small cart has a speed va = 4 m/s as it passes point A. It moves without appreciable friction and passes over the top hump of the track. Determine the cart speed as it passes point B. Is knowledge of the shape of the track necessary? VA= 4 m/s 1.8m. A Barrow_forwardThe collar is given a speed v₁ = 5 m/s to the left at position A. What is its speed at B? The guide is smooth so that the collar is not subject to any friction. The unstretched length of the spring is R = 1.2 m and the spring constant is k = 500 N/m. (15 points).arrow_forwardThe 5-lb collar slides on the smooth rod, so that when it is at 4 it has a speed of 10 ft/s. If the spring to which it is attached has an unstretched length of 3 ft. and a stiffness of k = 10 lb/ft, determine the normal force on the collar and the acceleration of the collar at this instant. Solution: 2 ft 10 ft/sarrow_forward
- When s= 0.6 m, the spring is unstretched and the 10kg block has a speed of 5 m/s down the smooth plane. Determine the distances when the block stops. * * = 200 N m Sm F-100 Narrow_forwardThe spring in the toy gun has an unstretched length of 95 mm. It is compressed and locked in the position shown. When the trigger is pulled, the spring unstretched 10.5 mm, and the 23-gg ball moves along the barrel. Determine the speed of the ball when it leaves the gun. Neglect friction.arrow_forwardThe 2-kg block B and 15-kg cylinder A are connected to a light cord that passes through a hole in the center of the smooth table. If the block is given a speed of v = 10 m/s, determine the radius r of the circular path along which it travels.arrow_forward
- The cyclist travels to point A, pedaling until he reaches a speed vA= 8 m/s. He then coasts freely up the curved surface. Determine the normal force he exerts on the surface when he reaches point B. The total mass of the bike and man is 75 kg. Neglect friction, the mass of the wheels, and the size of the bicycle.arrow_forwardThe spring is not stretched or compressed when “s=0.8m" and the 11 kg block which is subjected to a force of 105 N has a speed of 5.5 m/s down the smooth plane. Using "THE PRINCIPLE OF WORK AND ENERGY", find the distance "s" when the block STOPS. k = 200 N/m 5 m/s F = 100 N 30°arrow_forwardForce P is used to pull the block A to the left along the smooth surface (no friction), while block B moves up. The system starts from rest. Determine: a. Acceleration after 5 seconds b. Velocity after 5 seconds C. Position after 5 seconds P(N) D MA= 6kg loarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY