PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 15P
The two blocks A and B have weights WA = 60 lb and WB = 10 lb. If the kinetic coefficient of friction between the incline and block A is μk = 0.2, determine the speed of A after it moves 3ft down the plane starting from rest. Neglect the mass of the cord and pulleys.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
1. If the 50-kg crate starts from rest and achieves a velocity of v = 4 m/s when it travels a distance of 5 m to
the right, determine the magnitude of the force P acting on the crate. The coefficient of static friction
between the crate and the ground is u. = 0.3
30
The 56.28 kg crate is hoisted up the 0 = 27° incline by
the pulley system and motor M. If the crate starts from
rest and, by constant acceleration, attains a speed of
8.17 m/s after traveling 7.84 m along the plane,
determine the supplied power to the motor if the crate
has moved 8 m and the coefficient of kinetic friction
between the plane and the crate is Hk = 0.3. Neglect
friction along the plane. The motor has an efficiency
of 0.691.
M
Determine the velocity of the 68.3-lb block A if both blocks are released from rest and the
26.2-lb block B moves 3.9 ft up the incline. The coefficient of friction between the plane and
the blocks is us = 0.1.
Chapter 14 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 14 - Prob. 1FPCh. 14 - If the motor exerts a constant force of 300 N on...Ch. 14 - If the motor exerts a force of F = (600 + 2s2) N...Ch. 14 - The 1.8-Mg dragster is traveling at 125 m/s when...Ch. 14 - When s = 0.5 m, the spring is unstretched and the...Ch. 14 - The 5-lb collar is pulled by a cord that passes...Ch. 14 - Prob. 2PCh. 14 - The 100-kg crate is subjected to the forces shown....Ch. 14 - Determine the required height h of the roller...Ch. 14 - When the driver applies the brakes of a light...
Ch. 14 - Prob. 7PCh. 14 - The force F, acting in a constant direction on the...Ch. 14 - The 2-lb brick slides down a smooth roof, such...Ch. 14 - The two blocks A and B have weights WA = 60 lb and...Ch. 14 - A small box of mass m is given a speed of v=14gr...Ch. 14 - Prob. 18PCh. 14 - If the cord is subjected to a constant force of F=...Ch. 14 - The crash cushion for a highway barrier consists...Ch. 14 - The 25-lb block has an initial speed of v0 = 10...Ch. 14 - At a given instant the 10-lb block A is moving...Ch. 14 - Prob. 25PCh. 14 - The catapulting mechanism is used to propel the...Ch. 14 - Prob. 27PCh. 14 - Prob. 31PCh. 14 - When the 150-lb skier is at point A he has a speed...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - If the contact surface between the 20-kg block and...Ch. 14 - Prob. 8FPCh. 14 - Prob. 9FPCh. 14 - Prob. 10FPCh. 14 - Prob. 11FPCh. 14 - Prob. 12FPCh. 14 - The jeep has a weight of 2500 lb and an engine...Ch. 14 - Determine the power Input for a motor necessary to...Ch. 14 - An automobile having a mass of 2 Mg travels up a 7...Ch. 14 - Prob. 45PCh. 14 - To dramatize the loss of energy in an automobile,...Ch. 14 - Escalator steps move with a constant speed of 0.6...Ch. 14 - Prob. 48PCh. 14 - The 1000-lb elevator is hoisted by the pulley...Ch. 14 - The sports car has a mass of 2.3 Mg, and while it...Ch. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - The 50-lb block rests on the rough surface for...Ch. 14 - The 2-kg pendulum bob is released from rest when...Ch. 14 - Prob. 14FPCh. 14 - Prob. 15FPCh. 14 - Prob. 16FPCh. 14 - The 75-lb block is released from rest 5 ft above...Ch. 14 - Prob. 18FPCh. 14 - The girl has a mass of 40 kg and center of mass at...Ch. 14 - The 30-lb block A is placed on top of two nested...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - Prob. 71PCh. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - Prob. 76PCh. 14 - The roller coaster car having a mass m is released...Ch. 14 - The spring has a stiffness k = 200 N/m and an...Ch. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - When s = 0, the spring on the firing mechanism is...Ch. 14 - If the mass of the earth is Me, show that the...Ch. 14 - A rocket of mass m is fired vertically from the...Ch. 14 - The 4-kg smooth collar has a speed of 3 m/s when...Ch. 14 - Prob. 85PCh. 14 - Prob. 87PCh. 14 - Prob. 90PCh. 14 - The roller coaster car has a speed of 15 ft/s when...Ch. 14 - Prob. 1RPCh. 14 - The small 2-lb collar starting from rest at A...Ch. 14 - Prob. 3RPCh. 14 - Prob. 4RPCh. 14 - Prob. 5RPCh. 14 - Prob. 6RPCh. 14 - Prob. 7RPCh. 14 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 50-kg crate is pulled by the constant force P. If the crate P starts from rest and achieves a speed of 10 m/s in 5 s, determine the magnitude of P. The coefficient of kinetic friction between the crate and the ground is µk = 0.2.arrow_forwardThe 100 kg crate is subjected to forces F1= 800 N and F2= 1500 kN, as shown. If it is originally at rest, determine the distance it slides in order to attain a speed of v= 6 m/s. The coefficient of kinetic friction between the crate and the surface is Muk= 0.2arrow_forwardIf the 50 kg crate starts from rest and covers a distance of 7.8 meters upward in 4 seconds on a plane, then find the magnitude of the force P acting on the chest. The coefficient of kinetic friction between the crate and the floor is uk = 0.25. 30° 30arrow_forward
- If the coefficient of kinetic friction between the150-lb crate and the ground is uk = 0.2, %3D determine the speed of the crate when t = 4 s. The crate starts from rest and is towed by %3D the 100-lb force. 100 lb 30°arrow_forwardThe log has a mass of 500 kg and rests on the ground for which the coefficients of static and kinetic friction are Hs = 0.5 and Mk = 0.4, respectively. The winch delivers a horizontal towing force T to its cable at A which varies as shown in the graph. Determine the speed of the log when t = 5 s. Originally the tension in the cable is zero. Hint: First determine the force needed to begin moving the log. T (N) 1800 T = 200 ? t (s) 3 АТ Note: Solve using Principle of Impulse and momentumarrow_forwardThe 10-lb block has a speed of 4 ft/s when the force of F = (8t2) lb is applied. Determine the velocity of the block when t = 2 s. The coefficient of kinetic friction at the surface is mk = 0.2.arrow_forward
- When s = 55 cm, the spring is unstretched and the 9-kg block has a speed of 6.19 m/s down the smooth plane. If the coefficient of kinetic friction between the surface and the block is 0.25, find the distance (mm) s at which the block stops. k = 208 N/m 6.19 m/s F = 118 N 30arrow_forwardThe conveyor belt delivers each 12-kg crate to the ramp at A such that the crate’s speed is vA = 2.5 m>s,directed down along the ramp. If the coefficient of kinetic friction between each crate and the ramp is mk = 0.3,determine the smallest incline u of the ramp so that the crates will slide off and fall into the cartarrow_forwardIf the 200 kg crate starts from rest and travels a distance of 10 m up the plane in 6s, determine the magnitude of force acting on the crate. The coefficient of kinetic friction between the crate and the ground is μ=0.4. 30° P 30°arrow_forward
- The 18-kg block A slides on the surface for which μk = 0.3. The block has a velocity v = 10 m/s when it is s = 4 m from the 11-kg block B. The unstretched spring has a stiffness k = 1200 N/m . Take e = 0.6. The coefficient of friction is the same for both blocks.arrow_forwardThe car has a mass of 2000kg. Determine the shortest time it takes for it to reach a speed of 90 km/hr, starting from rest, if the engine drives the front wheels, whereas the rear wheels are free rolling. The coefficient of friction between the wheels and road is s=0.4, k=0.3. Neglect the mass of the wheels. What are the reactions at the front and rear wheels while the car is acceleratingarrow_forwardIf the coefficient of kinetic friction between the 50-kg crate and the ground isuk = 0.3, determine the distance the crate travels and its velocity when t= 3 s. The crate startsfrom rest, and p= 200 N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY