Concept explainers
To derive:
The expression of
Introduction:
The Arrhenius Law defines the activation energies and the rate constants of the reaction. The reactions can be of two types − catalyzed and uncatalyzed. In catalyzed reaction the presence of catalyst like enzymes reduce the activation energy and hence the reaction can be triggered at a lower energy level. In this question we are deriving an equation for catalytic power, that is, the ratio of catalyzed and uncatalyzed reactions.
Explanation of Solution
The catalyzed reaction is given as:
The equilibrium constant will determine the concentration of EX transition state which is given below:
The relation between free activation energy and equilibrium constant can be given by the following equation:
After substituting and simplifying the equations we get:
The above reaction was for catalyzed reactions. The reactions for uncatalyzed can be seen below:
Similarly, here the equilibrium constant determines the concentration of the X transition state as below:
The relation between free activation energy and equilibrium constant in this case can be given seen in the following equation:
Thus, simplifying the equations:
Hence, it can be considered that:
Want to see more full solutions like this?
Chapter 14 Solutions
Biochemistry
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Using Graphical Methods to Derive the Kinetic Constants for an Ordered, Single-Displacement Reaction The general rate equation for an ordered, single-displacement reaction where A is the leading substrate is v=Vmax[ A ][ B ](KsAKmB+KmA[ B ]+KmB[ A ]+[ A ][ B ])Write the Lineweaver-Burk (double-reciprocal) equivalent of this equation and from it calculate algebraic expressions for the following: a. The slope b. The y-intercepts c. The horizontal and vertical coordinates of the point of intersection when 1/v is plotted versus 1/[B] at various fixed concentrations of Aarrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Graphical Analysis of MWC Allosteric Enzyme Kinetics (Integrates with Chapter 1.1) Draw both Line weaver-Burk plots and Hanes-Woolf plots for an MWC allosteric enzyme system, showing separate curves for the kinetic response in (a) the absence of any effectors, (b) the presence of allosteric activator Λ, and (c) the presence of allosteric inhibitor I.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rate Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - I Measurement of the rate constants for a simple enzymatic reaction obeying Michaelis-Menten kinetics gave the following results: k1=2108M1sec1k1=1103sec1k2=5103sec1a. What is Ks, the dissociation constant for the enzyme-substrate complex? b. What is Km, the Michaelis constant for this enzyme? c. What is kcat (the turnover number) for this enzyme? d. What is the catalytic efficiency (kcat/Km) for this enzyme? e. Does this enzyme approach kinetic perfection? (That is, does kcat/Km approach the diffusion-controlled rate of enzyme association with substrate?) f. If a kinetic measurement was made using 2 nanomoles of enzyme per mL and saturating amounts of substrate, what would Vmax equal? g. Again, using 2 nanomoles of enzyme per mL of reaction mixture, what concentration of substrate would give v = 0.75 Vmax? h. If a kinetic measurement was made using 4 nanomoles of enzyme per mL and saturating amounts of substrate, what would Vmax equal? What would Km equal under these conditions?arrow_forward
- Answers to all problems are at the end οΓthis book. Detailed solutions are available in the Student Solutions Manual. Study Guide, and Problems Book. Calculation of Rate Enhancement from Energies of Activation The relationships between the free energy terms defined in the solution to Problem 4 earlier are shown in the following figure. If the energy of the ES complex is 10 kJ/mol lower than the energy of E + S, the value of Ge:is 20 kJ/mol, and the value of Ge:is 90 kJ/mol what is the rate enhancement achieved by an enzyme in this case?arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Exploring the Michaelis-Menten Equation - II If Vmax=100mol/mLsecand Km=2mM, what is the velocity of the reaction when [S] = 20 mM?arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Graphical Analysis of Negative Gooperativity in KNF Allosteric Enzyme Kinetics The KNF model for allosteric transitions includes the possibility of negative cooperativity Draw Lineweaver-Burk and Hanes-Woolf plots for the case of negative cooperatively m substrate binding. (As a point of reference, include a line showing the classic Michaelis-Menten response of v to [S].)arrow_forward
- Answers to all problems are at (he end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Understanding State Functions Define a slate function. Name three thermodynamic quantities that are state functions and three thatarrow_forwardAnswers to all problems are at the end οΓthis book. Detailed solutions are available in the Student Solutions Manual. Study Guide, and Problems Book. Using Site-Direcled Muta.nts to Understand an Enzyme Mechanism In this chapter, the exponent in which Craik and Rutter replaced Asp102 with Asn in trypsin (reducing activity 10,000 -fold) was discussed. On the basis of your knowledge of the catalytic triad structure in trypsin, suggest a structure for the “uncatalytic triad of Asn-His-Ser in this mutant enzyme. Explain why the structure you have proposed explains the reduced activity of the mutant trypsin. See the original journal articles (Sprang, et al., 1987. Science 237:905-913) to Craik, et al., 1987. Scieence 237:909-913) to see Craik and Rutter's answer to this question.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. CalculatingGandSfromH The equilibrium constant for some process AB 0.5 at 20°C and 10 at 30°C. Assuming that G is independent of temperature, calculate H for this reaction. GandSat20Candat30C Why- is it important in this problem to assume that H is independent of temperature?arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rate Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - III The citric acid cycle enzyme fumarase catalyzes the conversion of fumarate to form malate. Fumarate+H2OmalateThe turnover number, kcat, for fumarase is 800/sec. The Km of fumarase for its substrate fumarate is 5M. a. In an experiment using 2 nanomole/mL of fumarase, what is Vmax? b. The cellular concentration of fumarate is 47.5 M. What is v when [fumarate] = 47.5 M? c. What is the catalytic efficiency of fumarase? d. Does fumarase approach catalytic perfection?arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Calculating and Keq for Coupled Reactions For the process A B. Keq (AB) is 0.02 at 370C. For the process B C. Keq (BC)=1000 at 370C. Determine Keq (AC), the equilibrium constant for the overall process A C, from Keq((AB) and (BC). Determine standard-state free energy changes for all three processes, and use G. (AC) to determine Keq (AC). Make sure that ibis value agrees with that determined m part a of this problem.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rate Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - VI The enzyme catalase catalyzes the decomposition of hydrogen peroxide: 2H2O22H2O+O2The turnover number (kcat) for catalase is 40,000,000 sec-1. The Km of catalase for its substrate H2O2 is 0.11 M. a. In an experiment using 3 nanomole/L of catalase, what is Vmax? b. What is v when [H2O2] = 0.75 M? c. What is the catalytic efficiency of catalase? d. Does catalase approach catalytic perfection?arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning