Equilibrium Laws for Heterogeneous Reactions
The density of sodium chloride is
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Chemistry: The Molecular Nature of Matter
Additional Science Textbook Solutions
Chemistry: An Introduction to General, Organic, and Biological Chemistry (12th Edition) - Standalone book
General, Organic, and Biological Chemistry (3rd Edition)
Introductory Chemistry (6th Edition)
Introductory Chemistry (5th Edition) (Standalone Book)
Organic Chemistry
General, Organic, and Biological Chemistry: Structures of Life (5th Edition)
- A student set up an experiment for six different trials of the reaction between 1.00-M aqueous acetic acid, CH3COOH, and solid sodium hydrogen carbonate, NaHCO3. CH3COOH(aq) + NaHCO3(s) NaCH3CO2(aq) + CO2(g) + H2O() The volume of acetic acid was kept constant, but the mass of sodium bicarbonate increased with each trial. The results of the tests are shown in the figure. (a) In which trial(s) is the acetic acid the limiting reactant? (b) In which trial(s) is sodium bicarbonate the limiting reactant? (c) Explain your reasoning in parts (a) and (b).arrow_forwardThe boxes shown below represent a set of initial conditions for the reaction: Draw a quantitative molecular picture that shows what this system looks like after the reactants are mixed in one of the boxes and the system reaches equilibrium. Support your answer with calculations.arrow_forward. Explain what it means that a reaction has reached a state of chemical equilibrium. Explain why equilibrium is a dynamic state: Does a reaction really “stop” when the system reaches a state of equilibrium? Explain why, once a chemical system has reached equilibrium, the concentrations of all reactants remain constant with time. Why does this constancy of concentration not contradict our picture of equilibrium as being dynamic? What happens to the rates of the forward and reverse reactions as a system proceeds to equilibrium from a starting point where only reactants are present?arrow_forward
- The boxes shown below represent a set of initial conditions for the reaction: Draw a quantitative molecular picture that shows what this system looks like after the reactants are mixed in one of the boxes and the system reaches equilibrium. Support your answer with calculations. Consider an equilibrium mixture of four chemicals (A, B, C, and D, all gases) reacting in a closed flask according to the foll owing equation: A+BC+D a. You add more A to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer. b. You have the original set-up at equilibrium, and add more D to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forwardClassify each of the following reactions as (1) a redox reaction (2) a nonredox reaction or (3) cant classify because of insufficient information. a. A combination reaction in which one reactant is an element b. A decomposition reaction in which the products are all elements c. A decomposition reaction in which one of the products is an element d. A displacement reaction in which both of the reactants are compoundsarrow_forwardThere are many ionic compounds that dissolve in water to a very small extent. One example is lead(II) chloride. When it dissolves an equilibrium is established between the solid salt and its component ions. Suppose you stir some solid PbCl2 into water. Explain how you would prove that the compound dissolves but to a small extent? Is the dissolving process product-favored or reactant-favored? pbcl2(s)pb2+(aq)+2cl(aq)arrow_forward
- Solubility and Solubility Product You put 0.10-mol samples of KNO3, (NH4)2S, K2S, MnS, AgCl, and BaSO4 into separate flasks and add 1.0 L of water to each one. Then you stir the solutions for 5 minutes at room temperature. Assume that you have 1.0 L of solution in each case. a Are there any beakers where you would observe solid still present? How do you know? b Can you calculate the potassium ion concentration, K+, for the solutions of KNO3 and K2S? If so, do the calculations, and then compare these K+ concentrations. c For the solutions of (NH4)2S, K2S, and MnS, how do the concentrations of sulfide ion, S2, compare? (You dont need to calculate an answer at this point; just provide a rough comparison.) Be sure to justify your answer. d Are there any cases where you need more information to calculate the sulfide-ion concentration for the solutions of (NH4)2S, K2S, and MnS from part c? If so, what additional information do you need? e Consider all of the solutions listed at the beginning of this problem. For which ones do you need more information than is given in the question to determine the concentrations of the ions present? Where can you find this information? f How is the solubility of an ionic compound related to the concentrations of the ions of the dissolved compound in solution?arrow_forwardCalculate the value of the equilibrium constant for the reaction N2(g)+2O2(g)2NO2(g) if the concentrations of the species at equilibrium are [N2] = 0.0013, [O2] = 0.0024, and [NO2] = 0.00065.arrow_forwardClassify each of the reactions according to one of the four reaction types summarized in Table 18.1. (a) Fe2O3(s) + 2 Al(s) 2 Fe(s) + Al2O3(s) rH = 851.5 kj/mol-rxn rS = 375.2 J/K mol-rxn (b) N2(g) + 2 O2(g) 2 NO2(g) rH = 66.2 kJ/mol-rxn rS = 121.6 J/K mol-rxn TABLE 18.1 Predicting Whether a Reaction Will Be Spontaneous Under Standard Conditionsarrow_forward
- A novel process for obtaining magnesium from sea water involves several reactions. Write a balanced chemical equation for each step of the process. (a) The first step is the decomposition of solid calcium carbonate from seashells to form solid calcium oxide and gaseous carbon dioxide. (b) The second step is the formation of solid calcium hydroxide as the only product from the reaction of the solid calcium oxide with liquid water. (c) Solid calcium hydroxide is then added to the seawater, reacting with dissolved magnesium chloride to yield solid magnesium hydroxide and aqueous calcium chloride. (d) The solid magnesium hydroxide is added to a hydrochloric acid solution, producing dissolved magnesium chloride and liquid water. (e) Finally, the magnesium chloride is melted and electrolyzed to yield liquid magnesium metal and diatomic chlorine gas.arrow_forwardFor the simple reaction 2H2(g)+O2(g)2H2O(l)list the types of bonds that must be broken and the types of bonds that must form for the chemical reaction to take place.arrow_forwardClassify each of the reactions according to one of the four reaction types summarized in Table 18.1. (a) C6H12O6(s) + 6 O2(g) 6 CO2(g) + 6 H2O() rH = 673 kj/mol-rxn rS = 60.4 j/K mol-rxn (b) MgO(s) + C(graphite) Mg(s) + CO(g) rH = 490.7 kJ/mol-rxn rS = 197.9 J/K mol-rxn TABLE 18.1 Predicting Whether a Reaction Will Be Spontaneous Under Standard Conditionsarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning