Concept explainers
Using the data for the coffee table in Problem 14.31, build a labor

To determine: The number of labor hours and employees needed each day.
Explanation of Solution
Given information:
- Table requires 1 top, 4 legs, 1/8 gallon of strain, 1/16 gallon of blue, 2 short braces, 2 long braces, and brass cap on the bottom of each leg.
- 100 gallons of glue as inventory.
- All items except brass caps, stain and glue are planned on a Lot for lot basis.
- Caps are purchased in 1000’s, stain and glue by gallon.
- Lead time = 1 (for each item).
- 640 coffee tables needed on day 5 and 6.
- 128 coffee tables needed on days 7 and 8.
- Labor standard for each top is 2 labor hours.
- Each leg with brass cap installation and each pair of braces need ¼ hour.
- Base assembly needs 1 labor hour.
- Final assembly of table requires 2 labor hours.
- Number of hours per day is 8.
Product structure:
Net requirements plan:
Table:
Period (Day) | ||||||||
Table | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 640 | 640 | 128 | 128 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 640 | 640 | 128 | 128 | ||||
Planned order receipt | 640 | 640 | 128 | 128 | ||||
Planned order release | 640 | 640 | 128 | 128 |
Day 5:
The gross requirement is 640 (1 assembly) of Coffee table derived from the given information. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 640 (1 assembly) of Coffee table derived from the given information. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 5 which will be the planned order receipt in day 6.
Day 7:
The gross requirement is 128 (1 assembly) of Coffee table derived from the given information. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 6 which will be the planned order receipt in day 7.
Day 8:
The gross requirement is 128 (1 assembly) of Coffee table derived from the given information. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 7 which will be the planned order receipt in day 8.
Top:
Period (Day) | ||||||||
Top | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 640 | 640 | 128 | 128 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 640 | 640 | 128 | 128 | ||||
Planned order receipt | 640 | 640 | 128 | 128 | ||||
Planned order release | 640 | 640 | 128 | 128 |
Day 4:
The gross requirement is 640 (1 assembly) of Top derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 640 (1 assembly) of Top derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 128 (1 assembly) of Top derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 5 which will be the planned order receipt in day 6.
Day 7:
The gross requirement is 128 (1 assembly) of Top derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 6 which will be the planned order receipt in day 7.
Stain:
Period (Day) | ||||||||
Stain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 80 | 80 | 16 | 16 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 80 | 80 | 16 | 16 | ||||
Planned order receipt | 80 | 80 | 16 | 16 | ||||
Planned order release | 80 | 80 | 16 | 16 |
Day 4:
The gross requirement is 80 (1 assembly) of Stain derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 80. The lead time is 1 week. The planned order release will be 80 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 80 (1 assembly) of Stain derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 80. The lead time is 1 week. The planned order release will be 80 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 16 (1 assembly) of Stain derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 16. The lead time is 1 week. The planned order release will be 16 in day 5 which will be the planned order receipt in day 6.
Day 7:
The gross requirement is 16 (1 assembly) of Stain derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 16. The lead time is 1 week. The planned order release will be 16 in day 6 which will be the planned order receipt in day 7.
Glue:
Period (Day) | ||||||||
Glue | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 40 | 40 | 8 | 8 | ||||
Scheduled receipt | ||||||||
On hand (100) | 100 | 60 | 20 | 12 | 4 | |||
Net requirement | 0 | 0 | 0 | 0 | ||||
Planned order receipt | ||||||||
Planned order release |
Day 4:
The gross requirement is 40 (1 assembly) of Glue derived from the planned order release of Table. The On hand is 100. Therefore, the net requirement is 0. Therefore there will be no planned order release. The excess inventory 60 will be available at week 5.
Day 5:
The gross requirement is 40 (1 assembly) of Glue derived from the planned order release of Table. The On hand is 60. Therefore, the net requirement is 0. Therefore there will be no planned order release. The excess inventory 20 will be available at week 6.
Day 6:
The gross requirement is 8 (1 assembly) of Glue derived from the planned order release of Table. The On hand is 20. Therefore, the net requirement is 0. Therefore there will be no planned order release. The excess inventory 12 will be available at week 7.
Day 7:
The gross requirement is 8 (1 assembly) of Glue derived from the planned order release of Table. The On hand is 12. Therefore, the net requirement is 0. Therefore there will be no planned order release. The excess inventory 8 will be available at week 8.
Base assembly:
Period (Day) | ||||||||
Base | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 640 | 640 | 128 | 128 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 640 | 640 | 128 | 128 | ||||
Planned order receipt | 640 | 640 | 128 | 128 | ||||
Planned order release | 640 | 640 | 128 | 128 |
Day 4:
The gross requirement is 640 (1 assembly) of base assembly derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 640 (1 assembly) of base assembly derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 128 (1 assembly) of base assembly derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 5 which will be the planned order receipt in day 6.
Day 7:
The gross requirement is 128 (1 assembly) of base assembly derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 6 which will be the planned order receipt in day 7.
Short brace:
Period (Day) | ||||||||
Short Brace | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 1,280 | 1,280 | 256 | 256 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 1,280 | 1,280 | 256 | 256 | ||||
Planned order receipt | 1,280 | 1,280 | 256 | 256 | ||||
Planned order release | 1,280 | 1,280 | 256 | 256 |
Day 3:
The gross requirement is 1,280 (2 assembly) of short brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 1,280. The lead time is 1 week. The planned order release will be 1,280 in day 2 which will be the planned order receipt in day 3.
Day 4:
The gross requirement is 1,280 (2 assembly) of short brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 1,280. The lead time is 1 week. The planned order release will be 1,280 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 256 (2 assembly) of short brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 256 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 256 (2 assembly) of short brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 256 in day 5 which will be the planned order receipt in day 6.
Long brace:
Period (Day) | ||||||||
Long Brace | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 1,280 | 1,280 | 256 | 256 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 1,280 | 1,280 | 256 | 256 | ||||
Planned order receipt | 1,280 | 1,280 | 256 | 256 | ||||
Planned order release | 1,280 | 1,280 | 256 | 256 |
Day 3:
The gross requirement is 1,280 (2 assembly) of long brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 1,280. The lead time is 1 week. The planned order release will be 1,280 in day 2 which will be the planned order receipt in day 3.
Day 4:
The gross requirement is 1,280 (2 assembly) of long brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 1,280. The lead time is 1 week. The planned order release will be 1,280 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 256 (2 assembly) of long brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 256 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 256 (2 assembly) of long brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 256 in day 5 which will be the planned order receipt in day 6.
Leg:
Period (Day) | ||||||||
Leg | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 2,560 | 2,560 | 512 | 512 | ||||
Scheduled receipt | ||||||||
On hand (0) | ||||||||
Net requirement | 2,560 | 2,560 | 512 | 512 | ||||
Planned order receipt | 2,560 | 2,560 | 512 | 512 | ||||
Planned order release | 2,560 | 2,560 | 512 | 512 |
Day 3:
The gross requirement is 2,560 (4 assembly) of leg derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 2,560. The lead time is 1 week. The planned order release will be 2,560 in day 2 which will be the planned order receipt in day 3.
Day 4:
The gross requirement is 2,560 (4 assembly) of leg derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 2,560. The lead time is 1 week. The planned order release will be 2,560 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 512 (4 assembly) of leg derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 512. The lead time is 1 week. The planned order release will be 512 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 512 (4 assembly) of leg derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 512 in day 5 which will be the planned order receipt in day 6.
Brass caps:
Period (Day) | ||||||||
Brass caps | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 2,560 | 2,560 | 512 | 512 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 440 | 880 | 368 | 856 | 856 | 856 | |
Net requirement | 2,560 | 2,120 | 0 | 144 | ||||
Planned order receipt | 3,000 | 3,000 | 1,000 | |||||
Planned order release | 3,000 | 3,000 | 1,000 |
Day 2:
The gross requirement is 2,560 (1 assembly) of brass caps derived from the planned order release of legs. The On hand is 0. Therefore, the net requirement is 2,560. The lead time is 1 week. The planned order release will be 3,000 (1 Lot = 1,000) in day 1 which will be the planned order receipt in day 2. The excess inventory of 440 is available at day 3.
Day 3:
The gross requirement is 2,560 (1 assembly) of brass caps derived from the planned order release of legs. The On hand is 440. Therefore, the net requirement is 2,120. The lead time is 1 week. The planned order release will be 3,000 (1 Lot = 1,000) in day 2 which will be the planned order receipt in day 3. The excess inventory of 880 is available at day 4.
Day 4:
The gross requirement is 512 (1 assembly) of brass caps derived from the planned order release of legs. The On hand is 880. Therefore, the net requirement is 0. Therefore, there will be no planned release. The excess inventory of 368 is available at day 5.
Day 5:
The gross requirement is 512 (1 assembly) of brass caps derived from the planned order release of legs. The On hand is 368. Therefore, the net requirement is 144. The lead time is 1 week. The planned order release will be 1,000 (1 Lot = 1,000) in day 4 which will be the planned order receipt in day 5. The excess inventory of 856 is available at the next day.
Calculation of labor hours / day:
Master Schedule | Hours Required | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 | Day 8 |
Table assembly | 2 | 1280 | 1280 | 256 | 256 | ||||
Top preparation | 2 | 1280 | 1280 | 256 | 256 | ||||
Assemble base | 1 | 640 | 640 | 128 | 128 | ||||
Long brace (2) | 0.25 | 320 | 320 | 64 | 64 | ||||
Short brace (2) | 0.25 | 320 | 320 | 64 | 64 | ||||
Leg (4) | 0.25 | 640 | 640 | 128 | 128 | ||||
Total Hours | 0 | 1280 | 3200 | 3456 | 1920 | 640 | 256 | ||
Employees need @ 8 hours / day | 0 | 160 | 400 | 432 | 240 | 80 | 32 |
The master production schedule is derived from net requirements plan.
Formula to calculate number of hours / each day:
Formula to calculate the number of employees per 8 hour day:
Day 2:
Calculation of total hours for each day for each component:
Long brace:
Short brace:
Leg:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 3:
Calculation of total hours for each day for each component:
Top preparation:
Assemble base:
Long brace:
Short brace:
Leg:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 4:
Calculation of total hours for each day for each component:
Table assembly:
Top preparation:
Assemble base:
Long brace:
Short brace:
Leg:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 5:
Calculation of total hours for each day for each component:
Table assembly:
Top preparation:
Assemble base:
Long brace:
Short brace:
Leg:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 6:
Calculation of total hours for each day for each component:
Table assembly:
Top preparation:
Assemble base:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 7:
Calculation of total hours for each day for each component:
Table assembly:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Want to see more full solutions like this?
Chapter 14 Solutions
PRIN.OF OPERATIONS MANAGEMENT-MYOMLAB
- Sarah Anderson, the Marketing Manager at Exeter Township's Cultural Center, is conducting research on the attendance history for cultural events in the area over the past ten years. The following data has been collected on the number of attendees who registered for events at the cultural center. Year Number of Attendees 1 700 2 248 3 633 4 458 5 1410 6 1588 7 1629 8 1301 9 1455 10 1989 You have been hired as a consultant to assist in implementing a forecasting system that utilizes various forecasting techniques to predict attendance for Year 11. a) Calculate the Three-Period Simple Moving Average b) Calculate the Three-Period Weighted Moving Average (weights: 50%, 30%, and 20%; use 50% for the most recent period, 30% for the next most recent, and 20% for the oldest) c) Apply Exponential Smoothing with the smoothing constant alpha = 0.2. d) Perform a Simple Linear Regression analysis and provide the adjusted…arrow_forwardRuby-Star Incorporated is considering two different vendors for one of its top-selling products which has an average weekly demand of 70 units and is valued at $90 per unit. Inbound shipments from vendor 1 will average 390 units with an average lead time (including ordering delays and transit time) of 4 weeks. Inbound shipments from vendor 2 will average 490 units with an average lead time of 2 weeksweeks. Ruby-Star operates 52 weeks per year; it carries a 4-week supply of inventory as safety stock and no anticipation inventory. Part 2 a. The average aggregate inventory value of the product if Ruby-Star used vendor 1 exclusively is $enter your response here.arrow_forwardSam's Pet Hotel operates 50 weeks per year, 6 days per week, and uses a continuous review inventory system. It purchases kitty litter for $13.00 per bag. The following information is available about these bags: > Demand 75 bags/week > Order cost = $52.00/order > Annual holding cost = 20 percent of cost > Desired cycle-service level = 80 percent >Lead time = 5 weeks (30 working days) > Standard deviation of weekly demand = 15 bags > Current on-hand inventory is 320 bags, with no open orders or backorders. a. Suppose that the weekly demand forecast of 75 bags is incorrect and actual demand averages only 50 bags per week. How much higher will total costs be, owing to the distorted EOQ caused by this forecast error? The costs will be $higher owing to the error in EOQ. (Enter your response rounded to two decimal places.)arrow_forward
- Yellow Press, Inc., buys paper in 1,500-pound rolls for printing. Annual demand is 2,250 rolls. The cost per roll is $625, and the annual holding cost is 20 percent of the cost. Each order costs $75. a. How many rolls should Yellow Press order at a time? Yellow Press should order rolls at a time. (Enter your response rounded to the nearest whole number.)arrow_forwardPlease help with only the one I circled! I solved the others :)arrow_forwardOsprey Sports stocks everything that a musky fisherman could want in the Great North Woods. A particular musky lure has been very popular with local fishermen as well as those who buy lures on the Internet from Osprey Sports. The cost to place orders with the supplier is $40/order; the demand averages 3 lures per day, with a standard deviation of 1 lure; and the inventory holding cost is $1.00/lure/year. The lead time form the supplier is 10 days, with a standard deviation of 2 days. It is important to maintain a 97 percent cycle-service level to properly balance service with inventory holding costs. Osprey Sports is open 350 days a year to allow the owners the opportunity to fish for muskies during the prime season. The owners want to use a continuous review inventory system for this item. Refer to the standard normal table for z-values. a. What order quantity should be used? lures. (Enter your response rounded to the nearest whole number.)arrow_forward
- In a P system, the lead time for a box of weed-killer is two weeks and the review period is one week. Demand during the protection interval averages 262 boxes, with a standard deviation of demand during the protection interval of 40 boxes. a. What is the cycle-service level when the target inventory is set at 350 boxes? Refer to the standard normal table as needed. The cycle-service level is ☐ %. (Enter your response rounded to two decimal places.)arrow_forwardOakwood Hospital is considering using ABC analysis to classify laboratory SKUs into three categories: those that will be delivered daily from their supplier (Class A items), those that will be controlled using a continuous review system (B items), and those that will be held in a two bin system (C items). The following table shows the annual dollar usage for a sample of eight SKUs. Fill in the blanks for annual dollar usage below. (Enter your responses rounded to the mearest whole number.) Annual SKU Unit Value Demand (units) Dollar Usage 1 $1.50 200 2 $0.02 120,000 $ 3 $1.00 40,000 $ 4 $0.02 1,200 5 $4.50 700 6 $0.20 60,000 7 $0.90 350 8 $0.45 80arrow_forwardA part is produced in lots of 1,000 units. It is assembled from 2 components worth $30 total. The value added in production (for labor and variable overhead) is $30 per unit, bringing total costs per completed unit to $60 The average lead time for the part is 7 weeks and annual demand is 3800 units, based on 50 business weeks per year. Part 2 a. How many units of the part are held, on average, in cycle inventory? enter your response here unitsarrow_forward
- assume the initial inventory has no holding cost in the first period and back orders are not permitted. Allocating production capacity to meet demand at a minimum cost using the transportation method. What is the total cost? ENTER your response is a whole number (answer is not $17,000. That was INCORRECT)arrow_forwardRegular Period Time Overtime Supply Available puewag Subcontract Forecast 40 15 15 40 2 35 40 28 15 15 20 15 22 65 60 Initial inventory Regular-time cost per unit Overtime cost per unit Subcontract cost per unit 20 units $100 $150 $200 Carrying cost per unit per month 84arrow_forwardassume that the initial inventory has no holding cost in the first period, and back orders are not permitted. Allocating production capacity to meet demand at a minimum cost using the transportation method. The total cost is? (enter as whole number)arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,MarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational Publishing
- Contemporary MarketingMarketingISBN:9780357033777Author:Louis E. Boone, David L. KurtzPublisher:Cengage LearningPurchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage Learning


