The Silently Ringing Bell. A large, 34.0-kg bell is hung from a wooden beam so it can swing back and forth with negligible friction. The bell’s center of mass is 0.60 m below the pivot. The bell’s moment of inertia about an axis at the pivot is 18.0 kg · m 2 . The clapper is a small, 1.8-kg mass attached to one end of a slender rod of length L and negligible mass. The other end of the rod is attached to the inside of the bell; the rod can swing freely about the same axis as the bell. What should be the length L of the clapper rod for the bell to ring silently—that is, for the period of oscillation for the bell to equal that of the clapper?
The Silently Ringing Bell. A large, 34.0-kg bell is hung from a wooden beam so it can swing back and forth with negligible friction. The bell’s center of mass is 0.60 m below the pivot. The bell’s moment of inertia about an axis at the pivot is 18.0 kg · m 2 . The clapper is a small, 1.8-kg mass attached to one end of a slender rod of length L and negligible mass. The other end of the rod is attached to the inside of the bell; the rod can swing freely about the same axis as the bell. What should be the length L of the clapper rod for the bell to ring silently—that is, for the period of oscillation for the bell to equal that of the clapper?
The Silently Ringing Bell. A large, 34.0-kg bell is hung from a wooden beam so it can swing back and forth with negligible friction. The bell’s center of mass is 0.60 m below the pivot. The bell’s moment of inertia about an axis at the pivot is 18.0 kg · m2. The clapper is a small, 1.8-kg mass attached to one end of a slender rod of length L and negligible mass. The other end of the rod is attached to the inside of the bell; the rod can swing freely about the same axis as the bell. What should be the length L of the clapper rod for the bell to ring silently—that is, for the period of oscillation for the bell to equal that of the clapper?
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chapter 14 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.