
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 14.17E
BIO Weighing Astronauts. This procedure has been used to “weigh” astronauts in space: A 42.5-kg chair is attached to a spring and allowed to oscillate. When it is empty, the chair takes 1.30 s to make one complete vibration. But with an astronaut sitting in it, with her feel off the floor, the chair takes 2.54 s for one cycle. What is the mass of the astronaut?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Don't use ai
Make sure to draw a sketch with scale please
Make sure to draw a sketch with scale as well
Chapter 14 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 14.1 - A body like that shown in Fig. 14.2 oscillates...Ch. 14.2 - A glider is attached to a spring as shown in Fig....Ch. 14.3 - (a) To double the total energy for a mass-spring...Ch. 14.4 - A block attached to a hanging ideal spring...Ch. 14.5 - When a body oscillating on a horizontal spring...Ch. 14.6 - The center of gravity of a simple pendulum of mass...Ch. 14.7 - An airplane is flying in a straight line at a...Ch. 14.8 - When driven at a frequency near its natural...Ch. 14 - An object is moving with SHM of amplitude A on the...Ch. 14 - Think of several examples in everyday life of...
Ch. 14 - Does a tuning fork or similar tuning instrument...Ch. 14 - A box containing a pebble is attached to an ideal...Ch. 14 - If a uniform spring is cut in half, what is the...Ch. 14 - A glider is attached to a fixed ideal spring and...Ch. 14 - Two identical gliders on an air track are...Ch. 14 - You are captured by Martians, taken into their...Ch. 14 - The system shown in Fig. 14.17 is mounted in an...Ch. 14 - If a pendulum has a period of 2.5 s on earth, what...Ch. 14 - A simple pendulum is mounted in an elevator. What...Ch. 14 - What should you do to the length of the string of...Ch. 14 - If a pendulum clock is taken to a mountaintop,...Ch. 14 - When the amplitude of a simple pendulum increases,...Ch. 14 - Prob. 14.15DQCh. 14 - At what point in the motion of a simple pendulum...Ch. 14 - Could a standard of time be based on the period of...Ch. 14 - For a simple pendulum, clearly distinguish between...Ch. 14 - In designing structures in an earthquake-prone...Ch. 14 - BIO (a) Music. When a person sings, his or her...Ch. 14 - If an object on a horizontal, frictionless surface...Ch. 14 - The tip of a tuning fork goes through 440 complete...Ch. 14 - The displacement of an oscillating object as a...Ch. 14 - A machine part is undergoing SUM with a frequency...Ch. 14 - BIO The wings of the blue-throated hummingbird...Ch. 14 - A 2.40-kg ball is attached to an unknown spring...Ch. 14 - In a physics lab, you attach a 0.200-kg air-track...Ch. 14 - When a body of unknown mass is attached to an...Ch. 14 - When a 0.750-kg mass oscillates on an ideal...Ch. 14 - An object is undergoing SHM with period 0.900 s...Ch. 14 - A small block is attached to an ideal spring and...Ch. 14 - A 2.00-kg. frictionless block is attached to an...Ch. 14 - Repeat Exercise 14.13, but assume that at t = 0...Ch. 14 - The point of the needle of a sewing machine moves...Ch. 14 - A small block is attached to an ideal spring and...Ch. 14 - BIO Weighing Astronauts. This procedure has been...Ch. 14 - A 0.400-kg object undergoing SHM has ax = 1.80...Ch. 14 - On a frictionless, horizontal air track, a glider...Ch. 14 - A 0.500-kg mass on a spring has velocity as a...Ch. 14 - A 1.50-kg mass on a spring has displacement as a...Ch. 14 - BIO Weighing a Virus. In February 2004, scientists...Ch. 14 - CALC Jerk. A guitar string vibrates at a frequency...Ch. 14 - For the oscillating object in Fig. E14.4, what are...Ch. 14 - A small block is attached to an ideal spring and...Ch. 14 - A small block is attached to an ideal spring and...Ch. 14 - A 0.150-kg toy is undergoing SHM on the end of a...Ch. 14 - A harmonic oscillator has angular frequency and...Ch. 14 - A 0.500-kg glider, attached to the end of an ideal...Ch. 14 - A cheerleader waves her pom-pom in SHM with an...Ch. 14 - CP For the situation described in part (a) of...Ch. 14 - A block with mass m = 0.300 kg is attached to one...Ch. 14 - You are watching an object that is moving in SHM....Ch. 14 - A 2.00-kg frictionless block is attached to an...Ch. 14 - A 2.00-kg frictionless block attached to an ideal...Ch. 14 - A mass is oscillating with amplitude A at the end...Ch. 14 - A 175-g glider on a horizontal, frictionless air...Ch. 14 - A proud deep-sea fisherman hangs a 65.0-kg fish...Ch. 14 - A thrill-seeking cat with mass 4.00 kg is attached...Ch. 14 - A uniform, solid metal disk of mass 6.50 kg and...Ch. 14 - A certain alarm clock ticks four times each...Ch. 14 - A thin metal disk with mass 2.00 103 kg and...Ch. 14 - You want to find the moment of inertia of a...Ch. 14 - CALC The balance wheel of a watch vibrates with an...Ch. 14 - You pull a simple pendulum 0.240 m long to the...Ch. 14 - An 85.0-kg mountain climber plans to swing down,...Ch. 14 - A building in San Francisco has light fixtures...Ch. 14 - A Pendulum on Mars. A certain simple pendulum has...Ch. 14 - After landing on an unfamiliar planet, a space...Ch. 14 - In the laboratory, a student studies a pendulum by...Ch. 14 - A simple pendulum 2.00 m long swings through a...Ch. 14 - A small sphere with mass m is attached to a...Ch. 14 - Two pendulums have the same dimensions (length L)...Ch. 14 - We want to hang a thin hoop on a horizontal nail...Ch. 14 - A 1.80-kg connecting rod from a car engine is...Ch. 14 - Prob. 14.56ECh. 14 - The two pendulums shown in Fig. E14.57 each...Ch. 14 - CP A holiday ornament in the shape of a hollow...Ch. 14 - A 1.35-kg object is attached to a horizontal...Ch. 14 - A 50.0-g hard-boiled egg moves on the end of a...Ch. 14 - An unhappy 0.300-kg rodent, moving on the end of a...Ch. 14 - A mass is vibrating at the end of a spring of...Ch. 14 - A sinusoidally varying driving force is applied to...Ch. 14 - An object is undergoing SHM with period 0.300 s...Ch. 14 - An object is undergoing SHM with period 1.200 s...Ch. 14 - Four passengers with combined mass 250 kg compress...Ch. 14 - At the end of a ride at a winter-theme amusement...Ch. 14 - CP A block with mass M rests on a frictionless...Ch. 14 - A 1.50-kg, horizontal, uniform tray is attached to...Ch. 14 - CP A 10.0-kg mass is traveling to the right with a...Ch. 14 - An apple weighs 1.00 N. When you hang it from the...Ch. 14 - CP SHM of a Floating Object. An object with height...Ch. 14 - CP A square object of mass m is constructed of...Ch. 14 - An object with mass 0.200 kg is acted on by an...Ch. 14 - CALC A 2.00-kg bucket containing 10.0 kg of water...Ch. 14 - A uniform beam is suspended horizontally by two...Ch. 14 - A 5.00-kg partridge is suspended from a pear tree...Ch. 14 - A 0.0200-kg bolt moves with SHM that has an...Ch. 14 - CP SHM of a Butchers Scale. A spring of negligible...Ch. 14 - A 40.0-N force stretches a vertical spring 0.250...Ch. 14 - Dont Miss the Boat. While on a visit to Minnesota...Ch. 14 - CP An interesting, though highly impractical...Ch. 14 - CP A rifle bullet with mass 8.00 g and initial...Ch. 14 - CP Two uniform solid spheres, each with mass M =...Ch. 14 - CP In Fig. P14.85 the upper ball is released from...Ch. 14 - The Silently Ringing Bell. A large, 34.0-kg bell...Ch. 14 - CALC A slender, uniform, metal rod with mass M is...Ch. 14 - Two identical thin rods, each with mass m and...Ch. 14 - DATA A mass m is attached to a spring of force...Ch. 14 - DATA You hang various masses m from the end of a...Ch. 14 - DATA Experimenting with pendulums, you attach a...Ch. 14 - The Effective Force Constant of Two Springs. Two...Ch. 14 - CALC A Spring with Mass. The preceding problems in...Ch. 14 - BIO SEEING SURFACES AT THE NANOSCALE. One...Ch. 14 - In the model of Problem 14.94, what is the...Ch. 14 - By what percentage does the frequency of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Design an experiment to solve the following problem: Determine the rate of methanogenesis (CO2 + 4 H2 CH4 + 2 ...
Brock Biology of Microorganisms (15th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
What name is given to the zone of greatest seismic activity?
Applications and Investigations in Earth Science (9th Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
WHAT IF? Most prairies experience regular fires, typically every few years. If these disturbances were relative...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Ultimate Byleth and Little Mac fight. Little Mac, who is a boxer, dashes forward at 26.6 m/s, fist first. Byleth moves in the opposite direction at 3.79 m/s, where they collide with Little Mac’s fist. After the punch Byleth flies backwards at 11.1 m/s. How fast, and in what direction, is Little Mac now moving? Little Mac has a mass of 48.5 kg and Byleth has a mass of 72.0 kg.arrow_forwardMake sure to draw a sketch with scale as wellarrow_forwardMake sure to draw a sketch with scale pleasearrow_forward
- Kirby jumps towards his enemy/ally, Meta Knight, at 2.06 m/s while Meta Knight glides in the opposite direction (toward Kirby) at 5.06 m/s. Kirby then begins to inhale, swallowing Meta Knight. What is Kirby/Meta Knight’s velocity immediately after being swallowed? Please put the magnitude of the velocity and then mark direction using dropdown menu. Kirby has a mass of 0.283 kg and Meta Knight has a mass of 0.538 kg.arrow_forwardNo Aiarrow_forwardCan someone help mearrow_forward
- Need help on the following questions on biomechanics. (Please refer to images below)A gymnast weighing 68 kg attempts a handstand using only one arm. He plants his handat an angle resulting in the reaction force shown.A) Find the resultant force (acting on the Center of Mass)B) Find the resultant moment (acting on the Center of Mass)C) Draw the resultant force and moment about the center of mass on the figure below. Will the gymnast rotate, translate, or both? And in which direction?arrow_forwardPlease help me on the following question (Please refer to image below)An Olympic lifter (m = 103kg) is holding a lift with a mass of 350 kg. The barexerts a purely vertical force that is equally distributed between both hands. Each arm has amass of 9 kg, are 0.8m long and form a 40° angle with the horizontal. The CoM for each armis 0.5 m from hand. Assuming the lifter is facing us in the diagram below, his right deltoidinserts 14cm from the shoulder at an angle of 13° counter-clockwise from the humerus.A) You are interested in calculating the force in the right deltoid. Draw a free body diagramof the right arm including the external forces, joint reaction forces, a coordinate system andstate your assumptions.B) Find the force exerted by the right deltoidC) Find the shoulder joint contact force. Report your answer using the magnitude and directionof the shoulder force vector.arrow_forwardI need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could bearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY