Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 14.4P
(a)
To determine
Find the total active force per unit length of the wall and the location of the resultant.
(b)
To determine
Find the total active force per unit length of the wall and the location of the resultant.
(c)
To determine
Find the total active force per unit length of the wall and the location of the resultant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q: For the retaining wall shown in the following figure, determine the force per unit length of
the wall for Rankine's active state. Also find the location of the resultant.
3 m
z 3 m
y = 16 kN/m³
' = 30°
c' = 0
Groundwater table
Y sat = 18 kN/m³
' = 35°
c' = 0
11.7 A retaining wall is shown in Figure 11.22. Determine the Rankine active force, Pa, per unit
length of the wall and the location of the resultant for each of the following cases:
a. H = 12 ft, H, = 4 ft, y, = 105 lb/ft, y=
b. H = 20 ft, H, = 6 ft, y, = 110 lb/ft, y = 126 lb/ft', oi = 34°, d; = 34°, q = 300 lb/ft
122 Ib/ft', i = 30°, = 30°, q = 0
6 Cengage Learning. All Riphts Reserved. May not be copied, scanned, or duplicated, in whole or in part Due to elsctronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
s deemed that any suppressed content does nol maierially affect the overall learning exnerience Ceneaec ernin neerves the right to mrmove additional.contant
13.22 Consider the retaining wall shown in Figure 13.38. The height of the wall is 9.75 m,
and the unit weight of the sand backfill is 18.7 kN/m². Using Coulomb's equation,
calculate the active force, Pq. on the wall for the following values of the angle of
wall friction. Also, comment on the direction and location of the resultant.
a. 8' = 14°
b. 8' = 21°
+
Sand
y = 18.7 kN/m³
c' = 0
d' = 34°
e = 12°
8' (wall friction)
e = 10°
H= 9.75 m
Figure 13.38
© Cengage Learning 2014
Chapter 14 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Knowledge Booster
Similar questions
- A retaining wall supports a horizontal backfill that is composed of two types of soil. The first layer is 4.79 meters high. It has a unit weight of 16.61 kN/m3. The second layer is 6.58 meters and has a unit weight of 18.72 kN/m3. If the angle of friction for both layers is 34°, determine the total active force (kN) acting on the retaining wall per unit width. Final answer should be in two decimal places.arrow_forward4) : For the retaining wall shown in Figure-3, determine the force per unit length of the wall for Rankine’s active state. Also find the location of the resultant.arrow_forward13.22 Consider the retaining wall shown in Figure 13.38. The height of the wall is 9.75m. and the unit weight of the sand backfill is 18.7kN/m3. Using Coulomb's equation, calculate the active force, Pa, on the wall for the following values of the angle of wall friction. Also, comment on the direction and location of the resultant.arrow_forward
- Z 0 y = 15.72 kN/m³ ₁ = 30° 2m c = 0 1 m Groundwater table Ysat 18.86 kN/m³ 2 = 26° c₂= 10 kN/m² (a) For the retaining wall shown in picture, determine the Rankine passive force and the Rankine active force per unit length of the wall. Also find the location of the resultant line of action.arrow_forwardA retaining wall is shown in Figure 14.23. Determine Rankine’s active force, Pa, per unit length of the wall and the location of the resultant in each of the following cases:arrow_forwardIn Figure 12.24, which shows a vertical retaining wall with a granular backfill, let H = 4 m, α = 17.5º, γ = 16.5 kN/m3, Φ' = 35º, and ẟ' = 10º. Based on Caquot and Kerisel’s solution, what would be the passive force per meter length of the wall?arrow_forward
- For the concrete gravity retaining wall shown in Figure (2), find the minimum base width of the wall for no tension to develop at the edge of the base. use yc = 24.0 kN/m³ F 6.0 m B kN m³ Yt 18.0- Ø=30.0° 8 = 0.0⁰ C₁=0 Figure No. 2arrow_forward.A 6 m vertical retaining wall is supporting a horizontal backfill of a normally consolidated soil having a unit weight of 18 kN/m3 and a friction angle of 35 degrees. Cohesion of soil is zero. (Use four decimal places) A. Determine the at rest force per unit length of the wall. B. Determine the active force develop at the wall. C. Calculate the passive force acting on the wall.arrow_forwardA cantilever retaining wall supports 2 layers of soil and surcharge as shown below. The layers have these properties: Layer 1: 1.8m thick. γ = 17.4 kN/m3 and ϕ = 22 degrees Layer 2: 4.2m thick. γsat = 18.1 kN/m3 and ϕ = 30 degrees The angle of friction between the base and soil is 42 degrees. Unit weight of concrete is 23.6 kN/m3 What is the design moment (kNm / m) at the bottom of the stem? None of the choices 819.98 478.88 363.00 299.30 Please answer this asap. For upvote. Thank you very mucharrow_forward
- A retaining wall supports a horizontal backfill that is composed of two types of soil. The first layer is 4.47m high. It has a unit weight of 16.92kN/m3. The second layer is 5.76m and has a unit weight of18.51 kn/m3. If the angle of friction for both layers is 38 degrees, determine the total active force (kN) acting on the retaining wall per unit. Use stored value. Asnwer on 5 decimal places.arrow_forwardProblem 3: A vertical retaining wall 6 m high is supporting a horizontal backfill having a weight 16.5 kN/m and a saturated unit weight of 19 kN/m?. Angle of trictian of the backfill is 30. Ground water table is located 3 m below the ground surface. 1. Determine the at rest lateral earth force per meter length of the wall. 3.0 m 2. Determine the location of the resultant force. 3. Determine the at rest lateral earth force per meter length af the wall if it carries a surcharge of 50 kPa. 3.0 marrow_forwardA retaining wall supports a horizontal backfill that is composed of two types of soil. The first layer is 4.74 meters high. It has a unit weight of 17.25 kN/m3. The second layer is 6.6 meters and has a unit weight of 18.4 kN/m3. If the angle of friction for both layers is 32°, determine the total active force (kN) acting on the retaining wall per unit width. Use stored value. Answer in 5 decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning