Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 14.15P
To determine
Find the passive force per unit length of the wall.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Q: For the retaining wall shown in the following figure, determine the force per unit length of
the wall for Rankine's active state. Also find the location of the resultant.
3 m
z 3 m
y = 16 kN/m³
' = 30°
c' = 0
Groundwater table
Y sat = 18 kN/m³
' = 35°
c' = 0
solve the given image below
4) : For the retaining wall shown in Figure-3, determine the force per unit length of the wall for Rankine’s active state. Also find the location of the resultant.
Chapter 14 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Knowledge Booster
Similar questions
- Z 0 y = 15.72 kN/m³ ₁ = 30° 2m c = 0 1 m Groundwater table Ysat 18.86 kN/m³ 2 = 26° c₂= 10 kN/m² (a) For the retaining wall shown in picture, determine the Rankine passive force and the Rankine active force per unit length of the wall. Also find the location of the resultant line of action.arrow_forward11.7 A retaining wall is shown in Figure 11.22. Determine the Rankine active force, Pa, per unit length of the wall and the location of the resultant for each of the following cases: a. H = 12 ft, H, = 4 ft, y, = 105 lb/ft, y= b. H = 20 ft, H, = 6 ft, y, = 110 lb/ft, y = 126 lb/ft', oi = 34°, d; = 34°, q = 300 lb/ft 122 Ib/ft', i = 30°, = 30°, q = 0 6 Cengage Learning. All Riphts Reserved. May not be copied, scanned, or duplicated, in whole or in part Due to elsctronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). s deemed that any suppressed content does nol maierially affect the overall learning exnerience Ceneaec ernin neerves the right to mrmove additional.contantarrow_forward13.22 Consider the retaining wall shown in Figure 13.38. The height of the wall is 9.75 m, and the unit weight of the sand backfill is 18.7 kN/m². Using Coulomb's equation, calculate the active force, Pq. on the wall for the following values of the angle of wall friction. Also, comment on the direction and location of the resultant. a. 8' = 14° b. 8' = 21° + Sand y = 18.7 kN/m³ c' = 0 d' = 34° e = 12° 8' (wall friction) e = 10° H= 9.75 m Figure 13.38 © Cengage Learning 2014arrow_forward
- 1- Figure below shows a retaining wall. Determine the magnitude of the lateral earth force per unit length for the following conditions: 1) At-rest force 2) Active force Also, find the location of the resultant, 7, measured from the bottom of the wall. H (ft) y (lb/ft') 15 19 120 Sand Unit weight = y (or density = p) %3D H c' = 0 8' (angle of wall friction) = 0arrow_forwardPlease answer 13.13arrow_forward13.22 Consider the retaining wall shown in Figure 13.38. The height of the wall is 9.75m. and the unit weight of the sand backfill is 18.7kN/m3. Using Coulomb's equation, calculate the active force, Pa, on the wall for the following values of the angle of wall friction. Also, comment on the direction and location of the resultant.arrow_forward
- A retaining wall is shown in Figure 1. Determine the Rankine active and passive force, per unit length of the wall and the location of the resultant with the following measurements and parameters given:arrow_forwardPlease only solve 12.15 PLEASE EXPLAIN TO ME HOW TO FIND THE LOCATION OF THE RESULTANT, I don't know how to take the moment about the buttom for each area, please explain, thank youarrow_forwardQ5: In the case of the retaining wall depicted below. Calculate the lateral earth fore at rest per unit length of the wall. Determine the location of the resulting force as well as its magnitude. [25] y = 16.5 kN/m $ = 30 C = 0 Ground v Water table 2.5m Yur = 19.3 kN/m 0 = 30 C = 0 2.5m Good Luckarrow_forward
- Someone can help me with this one pleasearrow_forwardA retaining wall is shown in Figure 14.23. Determine Rankine’s active force, Pa, per unit length of the wall and the location of the resultant in each of the following cases:arrow_forward12.2 ), Figure P12.2, and the following values to determine the at-rest lat- eral earth force per unit length of the wall. Also find the location of the resultant. H = 5 m, H1 = 2 m, H, = 3 m, y = 15.5 kN/m², yt = 18.5 kN/m², 4' = 34°, c' = 0, q = 20 kN/m², . Repeat problem when water level Groundwater at ground surface. Figure P12.2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning