Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 14.12P
To determine
Find the passive force
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please answer 13.21
A 6m retaining wall is supporting a soil with the following properties:Unit weight = 16 KN/cu.mAngle of internal friction = 25ºCohesion = 14 Kpaa. Assuming no tensile cracks occurs in the soil; determine its normal pressure acting at the back of the wall.b. If tensile crack occurs in the soil, calculate its active pressure acting on the wall.c. Find the location of tensile crack measured from the surface of horizontal backfill.
sy
Chapter 14 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Knowledge Booster
Similar questions
- A frictionless retaining wall is shown in the figure below. q=10 kN/m² 7=15 kN/m³ = 26° c' = 8 kN/m² Determine: a. The active force after the tensile crack occurs. (kN/m) b. The passive force. (kN/m) c. Location of passive force from the base of the wall (m)arrow_forwardis 7 m high with a horizontal backfill. For 12.4 A vertical retaining wall the backfill, assume that y = 16.5 kN/m', ' 26°, and c' = 18 kN/m2. Determine the Rankine active force per unit length of the wall after the occurrence of the tensile crack. For the retaining wall, determine the Rankine active force per unit length of the wall and the location of the line of action of the 12.5 resultant. 12.6 For the retaining wall, H = 8 m, h' = 36°, a = 10°, y = 17 kN/m', and e' = 0. a. Determine the intensity of the Rankine active force at z 2 m, 4 m, and 6 m. b. Determine the Rankine active force per meter length of the wall and also the location and direction of the resultant. 12.7 Given: H = 7 m, y = 18 kN/m', ' = 25°, c' = 12 kN/m2, and a = 10°. Calculate the Rankine active force per unit length of the wall after the occurrence of the tensile crack. YI H Groundwater table H Figure P12.2arrow_forwardA frictionless retaining wall is shown in below. Determine the active force after the tensile crack occurs and the passive force.arrow_forward
- Q5) Refer to the Figure below. Given the height of the retaining wall, H is 5.4 m; the backfill is a saturated clay with Ø' = 0, c= 40 kN/m2, ysat = 19.5kN/m, a. Determine the Rankine active pressure distribution diagram behind the wall. b. Determine the depth of the tensile crack, zc. c. Estimate the Rankine active force per meter length of the wall before and after the occurrence of the tensile crack. Wall movement to left 45 + d'/2 45 + 6'/2 Rotation of wall about this point (а)arrow_forwardProb.9. A retaining wall 6 m high with vertical back, supports a cohesive backfill having unit weight 19 kN/m³, apparent cohesion = 26 kN/m², an = angle of internal friction is zero. Calculate_ (i) Depth of tension crack (ii) lateral active earth pressure intensity at basearrow_forwardGiven the height of the retaining wall, H is 6.4 m; the backfill is a saturated clay with f 5 08, c 5 30.2 kN/m2 , gsat 5 17.76 kN/m3 , a. Determine the Rankine active pressure distribution diagram behind the wall. b. Determine the depth of the tensile crack, zc. c. Estimate the Rankine active force per foot length of the wall before and after the occurrence of the tensile crack.arrow_forward
- Refer to Figure 12.6a. Given the height of the retaining wall, H is 18 ft; the backfill is a saturated clay with Φ = 0º, c = 500 lb/ft2, γsat = 120 lb/ft3,a. Determine the Rankine active pressure distribution diagram behind the wall.b. Determine the depth of the tensile crack, zc.c. Estimate the Rankine active force per foot length of the wall before and after the occurrence of the tensile crack.arrow_forward1. A vertical retaining wall has a height of 5.5m. it supports a soft backfill with a unit weight of 15.5 KN/m³ and has a cohesion of 16.6 KN/m². The undrained angle friction is 0 Determine the A. Max. Depth of the tensile crack B. The lateral force before tensile cracks occur C. The lateral force after tensile cracks occurarrow_forwardA retaining wall 6 m high with a vertical back face retains a homogeneous saturated soft clay. The saturated unit weight of the clay is 19.8 kN/m^3. Laboratory tests showed that the undrained shear strength, cu, of the clay is 14.7 kN/m^2. a. Do the necessary calculations and draw the variation of Rankine’s active pressure on the wall with depth. b. Find the depth up to which a tensile crack can occur. c. Determine the total active force per unit length of the wall before the tensile crack occurs. d. Determine the total active force per unit length of the wall after the tensile crack occurs. Also find the location of the resultant.arrow_forward
- A 5-m-high retaining wall with a vertical back face retains a homogeneous satu- rated soft clay. The saturated unit weight of the clay is 21 kN/mn³. Laboratory tests showed that the undrained shear strength, C, of the clay is 17 kN/m². a. Make the necessary calculation and draw the variation of Rankine's active pressure on the wall with depth. b. Find the depth up to which tensile crack can occur. c. Determine the total active force per unit length of the wall before the tensile crack occurs. d. Determine the total active force per unit length of the wall after the tensile crack occurs. Also, find the location of the resultant.arrow_forward11.7 A retaining wall is shown in Figure 11.22. Determine the Rankine active force, Pa, per unit length of the wall and the location of the resultant for each of the following cases: a. H = 12 ft, H, = 4 ft, y, = 105 lb/ft, y= b. H = 20 ft, H, = 6 ft, y, = 110 lb/ft, y = 126 lb/ft', oi = 34°, d; = 34°, q = 300 lb/ft 122 Ib/ft', i = 30°, = 30°, q = 0 6 Cengage Learning. All Riphts Reserved. May not be copied, scanned, or duplicated, in whole or in part Due to elsctronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). s deemed that any suppressed content does nol maierially affect the overall learning exnerience Ceneaec ernin neerves the right to mrmove additional.contantarrow_forwardA frictionless retaining wall is shown ih the figure below. q= 10 kN/m 1= 15 kN/m o = 26° d'=8 kN/m 4 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning