(a)
Interpretation:
The most populated rotational level for a sample of
Concept introduction:
An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant. This is known as the Franck-Condon principle.
Answer to Problem 14.32E
The most populated rotational level for a sample of
Explanation of Solution
The most populated rotational level is calculated by the formula as shown below.
Where,
•
•
•
The rotational constant is calculated by the formula as shown below.
Where,
•
•
•
The reduced mass is calculated by the formula as shown below.
Where,
•
•
Substitute the value of mass of lithium and hydrogen in equation (3).
Convert
Substitute the value of reduced mass, bond length, Planck’s constant in equation (2).
Substitute the value of rotational constant, Boltzmann’s constant and
Therefore, the most populated rotational level for a sample of
the most populated rotational level for a sample of
(b)
Interpretation:
The most populated rotational level for a sample of
Concept introduction:
An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant. This is known as the Franck-Condon principle.
Answer to Problem 14.32E
The most populated rotational level for a sample of
Explanation of Solution
The most populated rotational level is calculated by the formula as shown below.
Where,
•
•
•
The rotational constant is calculated by the formula as shown below.
Where,
•
•
•
The reduced mass is calculated by the formula as shown below.
Where,
•
•
Substitute the value of mass of lithium and hydrogen in equation (3).
Convert
Substitute the value of reduced mass, bond length, Planck’s constant in equation (2).
Substitute the value of rotational constant, Boltzmann’s constant and
Therefore, the most populated rotational level for a sample of
The most populated rotational level for a sample of
(c)
Interpretation:
The most populated rotational level for a sample of
Concept introduction:
An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant. This is known as the Franck-Condon principle.
Answer to Problem 14.32E
The most populated rotational level for a sample of
Explanation of Solution
The most populated rotational level is calculated by the formula as shown below.
Where,
•
•
•
The rotational constant is calculated by the formula as shown below.
Where,
•
•
•
The reduced mass is calculated by the formula as shown below.
Where,
•
•
Substitute the value of mass of lithium and hydrogen in equation (3).
Convert
Substitute the value of reduced mass, bond length, Planck’s constant in equation (2).
Substitute the value of rotational constant, Boltzmann’s constant and
Therefore, the most populated rotational level for a sample of
The most populated rotational level for a sample of
Want to see more full solutions like this?
Chapter 14 Solutions
Physical Chemistry
- Show work. Don't give Ai and copied solutionarrow_forwardNonearrow_forwardUnshared, or lone, electron pairs play an important role in determining the chemical and physical properties of organic compounds. Thus, it is important to know which atoms carry unshared pairs. Use the structural formulas below to determine the number of unshared pairs at each designated atom. Be sure your answers are consistent with the formal charges on the formulas. CH. H₂ fo H2 H The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c is HC HC HC CH The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c isarrow_forward
- Draw curved arrows for the following reaction step. Arrow-pushing Instructions CH3 CH3 H H-O-H +/ H3C-C+ H3C-C-0: CH3 CH3 Harrow_forward1:14 PM Fri 20 Dec 67% Grade 7 CBE 03/12/2024 (OOW_7D 2024-25 Ms Sunita Harikesh) Activity Hi, Nimish. When you submit this form, the owner will see your name and email address. Teams Assignments * Required Camera Calendar Files ... More Skill: Advanced or complex data representation or interpretation. Vidya lit a candle and covered it with a glass. The candle burned for some time and then went off. She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? * (1 Point) She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? A Longer candle; No glass C B Longer candle; Longer glass D D B Longer candle; Same glass Same candle; Longer glassarrow_forwardBriefly describe the compounds called carboranes.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,