
(a)
Interpretation:
The number of Raman-active vibrations for the
Concept introduction:
The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•

Answer to Problem 14.94E
The number of Raman-active vibrations for the
Explanation of Solution
The symmetry of
The character table for point group
operations | |||||
This reducible representation reduced using great orthogonality theorem as shown below.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
The order of the group is
The great orthogonality theorem orthogonality of the irreducible representation of
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
The character of
Therefore,
Therefore, there are four Raman-active vibrations and two IR-active vibrations would be observed by
Therefore, the number of Raman-active vibrations for the
The number of Raman-active vibrations for the
(b)
Interpretation:
The number of Raman-active vibrations for the
Concept introduction:
The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•

Answer to Problem 14.94E
The number of Raman-active vibrations for the
Explanation of Solution
The symmetry of
The character table for point group
operations | |||
This reducible representation reduced using great orthogonality theorem as shown below.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
The order of the group is
The great orthogonality theorem orthogonality of the irreducible representation of
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
The character of
Therefore,
The
Therefore, there are six Raman-active vibrations and six IR-active vibrations would be observed by
Therefore, the number of Raman-active vibrations for the
The number of Raman-active vibrations for the
(c)
Interpretation:
The number of Raman-active vibrations for the
Concept introduction:
The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•

Answer to Problem 14.94E
The number of Raman-active vibrations for the
Explanation of Solution
The symmetry of
The character table for point group
operations | ||||
This reducible representation reduced using great orthogonality theorem as shown below.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
The order of the group is
The great orthogonality theorem orthogonality of the irreducible representation of
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Therefore,
The
The
The
Therefore, there are nine Raman-active vibrations and eight IR-active vibrations would be observed by
Therefore, the number of Raman-active vibrations for the
The number of Raman-active vibrations for the
(d)
Interpretation:
The number of Raman-active vibrations for the
Concept introduction:
The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•

Answer to Problem 14.94E
The number of Raman-active vibrations for the
Explanation of Solution
The symmetry of
The character table for point group
operations | |||
This reducible representation reduced using great orthogonality theorem as shown below.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
The order of the group is
The great orthogonality theorem orthogonality of the irreducible representation of
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
The character of
Therefore,
The
Therefore, there are six Raman-active vibrations and six IR-active vibrations would be observed by
Therefore, the number of Raman-active vibrations for the
The number of Raman-active vibrations for the
(e)
Interpretation:
The number of Raman-active vibrations for the
Concept introduction:
The characters of the irreducible representations of the given point group can be multiplied by each other. The only condition is the characters of the same symmetry operations are multiplied together. The multiplication of the characters is commutative.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•

Answer to Problem 14.94E
The number of Raman-active vibrations for the
Explanation of Solution
The symmetry of
The character table for point group
operations | |||||
This reducible representation reduced using great orthogonality theorem as shown below.
The great orthogonality theorem for the reducible representation can be represented as,
Where,
•
•
•
•
•
The order of the group is
The great orthogonality theorem orthogonality of the irreducible representation of
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
Substitute the value of order of the group, character of the class of the irreducible representation from character table of
The number of times the irreducible representation for
Similarly, for
The number of times the irreducible representation for
The character of
Therefore,
Therefore, there are four Raman-active vibrations and two IR-active vibrations would be observed by
Therefore, the number of Raman-active vibrations for the
The number of Raman-active vibrations for the
Want to see more full solutions like this?
Chapter 14 Solutions
Physical Chemistry
- Which of the following molecules are NOT typical carbohydrates? For the molecules that are carbohydrates, label them as an aldose or ketose. HO Он ОН ОН Он ОН но ΤΗ HO ОН HO eve Он он ОН ОН ОН If polyethylene has an average molecular weight of 25,000 g/mol, how many repeat units are present?arrow_forwardDraw the a-anomer cyclized pyranose Haworth projection of the below hexose. Circle the anomeric carbons. Number the carbons on the Fischer and Haworth projections. Assign R and S for each chiral center. HO CHO -H HO -H H- -OH H -OH CH₂OH Draw the ẞ-anomer cyclized furanose Haworth projection for the below hexose. Circle the anomeric carbons. Number the carbons on the Fischer and Haworth projections. HO CHO -H H -OH HO -H H -OH CH₂OHarrow_forwardName the below disaccharide. Circle any hemiacetals. Identify the numbering of glycosidic linkage, and identify it as a or ẞ. OH HO HO OH HO HO HO OHarrow_forward
- What are the monomers used to make the following polymers? F. а. b. с. d. Вецер хочому なarrow_forward1. Propose a reasonable mechanism for the following transformation. I'm looking for curved mechanistic arrows and appropriate formal charges on intermediates. OMe MeO OMe Me2N NMe2 OTBS OH xylenes OMe 'OTBSarrow_forwardWhat is the polymer made from the following monomers? What type of polymerization is used for each? а. ОН H2N но b. ن -NH2 d. H₂N NH2 довarrow_forward
- Condensation polymers are produced when monomers containing two different functional groups link together with the loss of a small molecule such as H2O. The difunctional monomer H2N(CH2)6COOH forms a condensation polymer. Draw the carbon-skeleton structure of the dimer that forms from this monomer.arrow_forwardWhat is the structure of the monomer?arrow_forward→ BINDERIYA GANBO... BINDERIYA GANBO. AP Biology Notes Gamino acid chart - G... 36:22 司 10 ☐ Mark for Review Q 1 Hide 80 8 2 =HA O=A¯ = H₂O Acid HIO HBrO HCIO Question 10 of 35 ^ Σ DELL □ 3 % Λ & 6 7 * ∞ 8 do 5 $ 4 # m 3 ° ( 9 Highlights & Notes AXC Sign out Carrow_forward
- Which representation(s) show polymer structures that are likely to result in rigid, hard materials and those that are likely to result in flexible, stretchable, soft materials?arrow_forward3. Enter the molecular weight of the product obtained from the Williamson Ether Synthesis? OH OH & OH excess CH3l Ag₂Oarrow_forwardPlease answer 1, 2 and 3 on the endarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning

