Physical Chemistry
Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
bartleby

Concept explainers

Question
Book Icon
Chapter 14, Problem 14.98E
Interpretation Introduction

Interpretation:

The energies of rotation for ammonia, NH3, as the rotational quantum number J ranges from 1 to 10 are to be determined. An energy level diagram for all the rotational levels is to be constructed. The degeneracies of the levels are to be determined.

Concept introduction:

Atoms of a molecule rotate in space about its moment of inertia. The rotational quantum number is represented by the symbol J. The z component of the rotational motion of the molecule is represented by MJ.

Expert Solution & Answer
Check Mark

Answer to Problem 14.98E

The energies of rotation for ammonia, NH3, as the rotational quantum number J ranges from 1 to 10 are determined below.

J K Erot/m1
1 -1 3753.185
1 0 1264.06
1 1 3753.185
2 -2 13748.68
2 -1 6281.305
2 0 3792.18
2 1 6281.305
2 2 13748.68
3 -3 29986.49
3 -2 17540.86
3 -1 10073.49
3 0 7584.36
3 1 10073.49
3 2 17540.86
3 3 29986.49
4 -4 52466.6
4 -3 35042.73
4 -2 22597.1
4 -1 15129.73
4 0 12640.6
4 1 15129.73
4 2 22597.1
4 3 52466.6
4 4 52466.6
5 -5 81189.03
5 -4 58786.9
5 -3 41363.03
5 -2 28917.4
5 -1 21450.03
5 0 18960.9
5 1 21450.03
5 2 28917.4
5 3 41363.03
5 4 58786.9
5 5 81189.03
6 -6 116153.8
6 -5 88773.39
6 -4 66371.26
6 -3 48947.39
6 -2 36501.76
6 -1 29034.39
6 0 26545.26
6 1 29034.39
6 2 36501.76
6 3 48947.39
6 4 66371.26
6 5 88773.39
6 6 116153.8
7 -7 157360.8
7 -6 125002.2
7 -5 97621.81
7 -4 75219.68
7 -3 57795.81
7 -2 45350.18
7 -1 37882.81
7 0 35393.68
7 1 37882.81
7 2 45350.18
7 3 57795.81
7 4 75219.68
7 5 97621.81
7 6 125002.2
7 7 157360.8
8 -8 204810.2
8 -7 167473.3
8 -6 135114.7
8 -5 107734.3
8 -4 85332.16
8 -3 67908.29
8 -2 55462.66
8 -1 47995.29
8 0 45506.16
8 1 47995.29
8 2 55462.66
8 3 67908.29
8 4 85332.16
8 5 107734.3
8 6 135114.7
8 7 167473.3
8 8 204810.2
9 -9 258501.8
9 -8 216186.7
9 -7 178849.8
9 -6 146491.2
9 -5 119110.8
9 -4 96708.7
9 -3 79284.83
9 -2 66839.2
9 -1 59371.83
9 0 56882.7
9 1 59371.83
9 2 66839.2
9 3 79284.83
9 4 96708.7
9 5 119110.8
9 6 146491.2
9 7 178849.8
9 8 216186.7
9 9 258501.8
10 -10 318435.8
10 -9 271142.4
10 -8 228827.3
10 -7 191490.4
10 -6 159131.8
10 -5 131751.4
10 -4 109349.3
10 -3 91925.43
10 -2 79479.8
10 -1 72012.43
10 0 69523.3
10 1 72012.43
10 2 79479.8
10 3 91925.43
10 4 109349.3
10 5 131751.4
10 6 159131.8
10 7 191490.4
10 8 228827.3
10 9 271142.4
10 10 318435.8

For the rotational quantum number J=1, the degeneracy is 3.

For the rotational quantum number J=2, the degeneracy is 5.

For the rotational quantum number J=3, the degeneracy is 7.

For the rotational quantum number J=4, the degeneracy is 9.

For the rotational quantum number J=5, the degeneracy is 11.

For the rotational quantum number J=6, the degeneracy is 13.

For the rotational quantum number J=7, the degeneracy is 15.

For the rotational quantum number J=8, the degeneracy is 17.

For the rotational quantum number J=9, the degeneracy is 19.

For the rotational quantum number J=10, the degeneracy is 21.

The energy level diagram for all the rotational levels is shown below.

Physical Chemistry, Chapter 14, Problem 14.98E , additional homework tip  1

Explanation of Solution

The formula to energy of rotation (Erot) is given by the formula below.

Erot=BJ(J+1)+(CB)K2 …(1)

Where,

J is the rotational quantum number.

K is the quantum number bounded by J.

The formula for B is given below.

B=h8π2Ibc …(2)

The formula for C is given below.

C=h8π2Icc …(3)

Where,

h is the Planck’s constant. (6.6×1034Js).

c is the speed of light. (3×108ms1).

The value of Ib is 4.413×1047kgm2.

Substitute the value of Ib, h and c in equation (2).

B=6.6×1034Js8×(3.14)2×4.413×1047kgm2×3×108ms1=632.03Jskg1m2m1s1×kgm2s-21J=632.03m1

The value of Ic is 2.806×1047kgm2.

Substitute the value of Ic, h and c in equation (3).

C=6.6×1034Js8×(3.14)2×2.806×1047kgm2×3×108ms1=3121.155Jskg1m2m1s1×kgm2s-21J=3121.155m1

The value of K is shown by the equation below.

K=Jto+J …(4)

The degeneracy is calculated by the formula given below.

Degeneracy=2J+1 …(5)

For the rotational quantum number J=1, the value of K is calculated below.

K=1to+1=1,0,1

The value of K is 1.

The value of J is 1.

Substitute the value of J in equation (5).

Degeneracy=2×1+1=3

Therefore, the degeneracy is 3.

Substitute the value of J, K, B and C in equation (1).

Erot=(632.03m1×1(1+1))+(3121.155m1632.03m1)(1)2=1264.06m1+2849.125m1=3753.185m1

Similarly the value of Erot for J=1 and corresponding values of K is given below.

J K Erot/m1
1 -1 3753.185
1 0 1264.06
1 1 3753.185

For the rotational quantum number J=2, the value of K is calculated below.

K=2to+2=2,1,0,1,2

Substitute the value of J in equation (5).

Degeneracy=2×2+1=5

Therefore, the degeneracy is 5.

Similarly the value of Erot for J=2 and corresponding values of K is given below.

J K Erot/m1
2 -2 13748.68
2 -1 6281.305
2 0 3792.18
2 1 6281.305
2 2 13748.68

For the rotational quantum number J=3, the value of K is calculated below.

K=3to+3=3,2,1,0,1,2,3

Substitute the value of J in equation (5).

Degeneracy=2×3+1=7

Therefore, the degeneracy is 7.

Similarly the value of Erot for J=3 and corresponding values of K is given below.

J K Erot/m1
3 -3 29986.49
3 -2 17540.86
3 -1 10073.49
3 0 7584.36
3 1 10073.49
3 2 17540.86
3 3 29986.49

For the rotational quantum number J=4, the value of K is calculated below.

K=4to+4=4,3,2,1,0,1,2,3,4

Substitute the value of J in equation (5).

Degeneracy=2×4+1=9

Therefore, the degeneracy is 9.

Similarly the value of Erot for J=4 and corresponding values of K is given below.

J K Erot/m1
4 -4 52466.6
4 -3 35042.73
4 -2 22597.1
4 -1 15129.73
4 0 12640.6
4 1 15129.73
4 2 22597.1
4 3 52466.6
4 4 52466.6

For the rotational quantum number J=5, the value of K is calculated below.

K=5to+5=5,4,3,2,1,0,1,2,3,4,5

Substitute the value of J in equation (5).

Degeneracy=2×5+1=11

Therefore, the degeneracy is 11.

Similarly the value of Erot for J=5 and corresponding values of K is given below.

J K Erot/m1
5 -5 81189.03
5 -4 58786.9
5 -3 41363.03
5 -2 28917.4
5 -1 21450.03
5 0 18960.9
5 1 21450.03
5 2 28917.4
5 3 41363.03
5 4 58786.9
5 5 81189.03

For the rotational quantum number J=6, the value of K is calculated below.

K=6to+6=6,5,4,3,2,1,0,1,2,3,4,5,6

Substitute the value of J in equation (5).

Degeneracy=2×6+1=13

Therefore, the degeneracy is 13.

Similarly the value of Erot for J=6 and corresponding values of K is given below.

J K Erot/m1
6 -6 116153.8
6 -5 88773.39
6 -4 66371.26
6 -3 48947.39
6 -2 36501.76
6 -1 29034.39
6 0 26545.26
6 1 29034.39
6 2 36501.76
6 3 48947.39
6 4 66371.26
6 5 88773.39
6 6 116153.8

For the rotational quantum number J=7, the value of K is calculated below.

K=7to+7=7,6,5,4,3,2,1,0,1,2,3,4,5,6,7

Substitute the value of J in equation (5).

Degeneracy=2×7+1=15

Therefore, the degeneracy is 15.

Similarly the value of Erot for J=7 and corresponding values of K is given below.

J K Erot/m1
7 -7 157360.8
7 -6 125002.2
7 -5 97621.81
7 -4 75219.68
7 -3 57795.81
7 -2 45350.18
7 -1 37882.81
7 0 35393.68
7 1 37882.81
7 2 45350.18
7 3 57795.81
7 4 75219.68
7 5 97621.81
7 6 125002.2
7 7 157360.8

For the rotational quantum number J=8, the value of K is calculated below.

K=8to+8=8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8

Substitute the value of J in equation (5).

Degeneracy=2×8+1=17

Therefore, the degeneracy is 17.

Similarly the value of Erot for J=8 and corresponding values of K is given below.

J K Erot/m1
8 -8 204810.2
8 -7 167473.3
8 -6 135114.7
8 -5 107734.3
8 -4 85332.16
8 -3 67908.29
8 -2 55462.66
8 -1 47995.29
8 0 45506.16
8 1 47995.29
8 2 55462.66
8 3 67908.29
8 4 85332.16
8 5 107734.3
8 6 135114.7
8 7 167473.3
8 8 204810.2

For the rotational quantum number J=9, the value of K is calculated below.

K=9to+9=9,8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,9

Substitute the value of J in equation (5).

Degeneracy=2×9+1=19

Therefore, the degeneracy is 19.

Similarly the value of Erot for J=9 and corresponding values of K is given below.

J K Erot
9 -9 258501.8
9 -8 216186.7
9 -7 178849.8
9 -6 146491.2
9 -5 119110.8
9 -4 96708.7
9 -3 79284.83
9 -2 66839.2
9 -1 59371.83
9 0 56882.7
9 1 59371.83
9 2 66839.2
9 3 79284.83
9 4 96708.7
9 5 119110.8
9 6 146491.2
9 7 178849.8
9 8 216186.7
9 9 258501.8

For the rotational quantum number J=10, the value of K is calculated below.

K=10to+10=10,9,8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,9,10

Substitute the value of J in equation (5).

Degeneracy=2×10+1=21

Therefore, the degeneracy is 21.

Similarly the value of Erot for J=10 and corresponding values of K is given below.

J K Erot/m1
10 -10 318435.8
10 -9 271142.4
10 -8 228827.3
10 -7 191490.4
10 -6 159131.8
10 -5 131751.4
10 -4 109349.3
10 -3 91925.43
10 -2 79479.8
10 -1 72012.43
10 0 69523.3
10 1 72012.43
10 2 79479.8
10 3 91925.43
10 4 109349.3
10 5 131751.4
10 6 159131.8
10 7 191490.4
10 8 228827.3
10 9 271142.4
10 10 318435.8

The energy level diagram for all the rotational levels is shown below.

Physical Chemistry, Chapter 14, Problem 14.98E , additional homework tip  2

Figure 1

Conclusion

The energies of rotation for ammonia, NH3, as the rotational quantum number J ranges from 1 to 10 have been rightfully stated. An energy level diagram for all the rotational levels has been rightfully constructed. The degenracies of the levels are rightfully stated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. Molecules absorb IR radiation consistent with vibrational energy and rotational energy. Which of these is present in condensed phases (liquid, solution, solid)?
A space probe was designed to see 13CO in the atmosphere of Saturn by looking for lines in its rotational spectrum. If the bond length of CO is 112.8 pm, at what wave number do the first three rotational transitions appear?
8C.4 (a) the moment of inertia of a CH4 molecule is 5.27 x 10^-47 kg m^2. What is the minimum energy needed to start it rotating? 8C.5 (a) use the data in 8C.4 (a) to calculate the energy needed excite a CH4 molecule from a state with l=1 to a state with l=2

Chapter 14 Solutions

Physical Chemistry

Ch. 14 - Prob. 14.11ECh. 14 - Prob. 14.12ECh. 14 - Prob. 14.13ECh. 14 - Prob. 14.14ECh. 14 - Diatomic sulfur, S2, was detected in the tail of...Ch. 14 - Prob. 14.16ECh. 14 - Prob. 14.17ECh. 14 - Prob. 14.18ECh. 14 - Prob. 14.19ECh. 14 - Prob. 14.20ECh. 14 - Prob. 14.21ECh. 14 - Prob. 14.22ECh. 14 - Which of the following molecules should have pure...Ch. 14 - Which of the following molecules should have pure...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - Derive equation 14.21 from the E expression...Ch. 14 - Prob. 14.28ECh. 14 - Prob. 14.29ECh. 14 - Lithium hydride, 7Li1H, is a potential fuel for...Ch. 14 - Prob. 14.31ECh. 14 - Prob. 14.32ECh. 14 - Prob. 14.33ECh. 14 - Prob. 14.34ECh. 14 - Prob. 14.35ECh. 14 - Prob. 14.36ECh. 14 - From the data in Table 14.2, predict B for DCl D...Ch. 14 - A colleague states that the pure rotational...Ch. 14 - Prob. 14.39ECh. 14 - Prob. 14.40ECh. 14 - Prob. 14.41ECh. 14 - Prob. 14.42ECh. 14 - Prob. 14.43ECh. 14 - Determine E for J=20J=21 for HBr assuming it acts...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Prob. 14.47ECh. 14 - Prob. 14.48ECh. 14 - Prob. 14.49ECh. 14 - Prob. 14.50ECh. 14 - Prob. 14.51ECh. 14 - Prob. 14.52ECh. 14 - Prob. 14.53ECh. 14 - Prob. 14.54ECh. 14 - Prob. 14.55ECh. 14 - Prob. 14.56ECh. 14 - Prob. 14.57ECh. 14 - Prob. 14.58ECh. 14 - Prob. 14.59ECh. 14 - Prob. 14.60ECh. 14 - Prob. 14.61ECh. 14 - Prob. 14.62ECh. 14 - Prob. 14.63ECh. 14 - Prob. 14.64ECh. 14 - Prob. 14.65ECh. 14 - Prob. 14.66ECh. 14 - Prob. 14.68ECh. 14 - Prob. 14.69ECh. 14 - Prob. 14.70ECh. 14 - Prob. 14.71ECh. 14 - Prob. 14.72ECh. 14 - Prob. 14.73ECh. 14 - Prob. 14.74ECh. 14 - Prob. 14.75ECh. 14 - Prob. 14.76ECh. 14 - Prob. 14.77ECh. 14 - Prob. 14.78ECh. 14 - Prob. 14.79ECh. 14 - Prob. 14.80ECh. 14 - Prob. 14.81ECh. 14 - Prob. 14.82ECh. 14 - Prob. 14.83ECh. 14 - Prob. 14.84ECh. 14 - Prob. 14.85ECh. 14 - Dioctyl sulfide, (C8H17)2S, and hexadecane,...Ch. 14 - Where would you expect vibrations for ethyl...Ch. 14 - Prob. 14.88ECh. 14 - Prob. 14.89ECh. 14 - Prob. 14.90ECh. 14 - Prob. 14.91ECh. 14 - Prob. 14.92ECh. 14 - Prob. 14.93ECh. 14 - Prob. 14.94ECh. 14 - The mutual exclusion rule states that for certain...Ch. 14 - Prob. 14.96ECh. 14 - Prob. 14.97ECh. 14 - Prob. 14.98ECh. 14 - Prob. 14.99ECh. 14 - Construct and compare the energy level diagrams...Ch. 14 - Prob. 14.101E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
    Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,