
Concept explainers
(a)
Interpretation:
The net reaction for given solutions has to be written.
Concept introduction:
Identifying relevant half-reaction:
Reduction reaction of each half cell have to be identified. In order to identify it, element with two oxidation number should be taken. From the elements reduction reaction for both right and left hand cell is given.
(a)

Explanation of Solution
To write: The net reaction for given solutions.
Elements with two oxidation states are
(b)
Interpretation:
The standard free energy and equilibrium constant of given cell has to be determined.
Concept introduction:
Relation between
(b)

Explanation of Solution
To determine: The standard free energy and equilibrium constant of given cell.
When the potentiometer is replaced with a wire in a cell there would be more current flows and concentration varies until the cell attains equilibrium. At this situation there is nothing to drive reaction. The cell voltage becomes zero.
(c)
Interpretation:
The cell voltage of given cell has to be determined.
Concept introduction:
Nernst Equation:
For Half-reaction,
The Nernst equation results in the half-cell potential E as,
Here,
T =Temperature (in K)
N = number of electrons in half-reaction
F = Faraday constant (
A = Activity of species, i
The voltage of a battery is calculated as
Cell voltage = potential of right hand electrode (
(c)

Explanation of Solution
To determine: The cell voltage of given cell.
Applying the electrode potential in Nernst equation, the cell voltage is calculated as
(d)
Interpretation:
The change in free energy of given cell has to be determined.
Concept introduction:
Relation between change in free energy and change in electric potential:
Here,
n = unit charge per molecule
N = number of electrons in half-reaction
F = Faraday constant (
(d)

Explanation of Solution
To determine: The change in free energy of given cell.
The free energy difference is calculated as
(e)
Interpretation:
The
Concept introduction:
When the potentiometer is replaced with a wire in a cell there would be more current flows and concentration varies until the cell attains equilibrium. At this situation there is nothing to drive reaction. The cell voltage becomes zero.
Relation between
(e)

Explanation of Solution
To determine: The
When the solution is at equilibrium the cell voltage E becomes zero.
Want to see more full solutions like this?
Chapter 14 Solutions
Quantitative Chemical Analysis
- Provide steps and explanation please.arrow_forwardDraw a structural formula for the major product of the acid-base reaction shown. H 0 N + HCI (1 mole) CH3 N' (1 mole) CH3 You do not have to consider stereochemistry. ● • Do not include counter-ions, e.g., Na+, I, in your answer. . In those cases in which there are two reactants, draw only the product from 989 CH3 344 ? [Farrow_forwardQuestion 15 What is the major neutral organic product for the following sequence? 1. POCI₂ pyridine ? 2. OsO4 OH 3. NaHSO Major Organic Product ✓ OH OH 'OH OH 'OH 'CIarrow_forward
- Could you please solve the first problem in this way and present it similarly but color-coded or step by step so I can understand it better? Thank you!arrow_forwardCould you please solve the first problem in this way and present it similarly but color-coded or step by step so I can understand it better? Thank you!arrow_forwardCould you please solve the first problem in this way and present it similarly but (color-coded) and step by step so I can understand it better? Thank you! I want to see what they are doingarrow_forward
- Can you please help mne with this problem. Im a visual person, so can you redraw it, potentislly color code and then as well explain it. I know im given CO2 use that to explain to me, as well as maybe give me a second example just to clarify even more with drawings (visuals) and explanations.arrow_forwardPart 1. Aqueous 0.010M AgNO 3 is slowly added to a 50-ml solution containing both carbonate [co32-] = 0.105 M and sulfate [soy] = 0.164 M anions. Given the ksp of Ag2CO3 and Ag₂ soy below. Answer the ff: Ag₂ CO3 = 2 Ag+ caq) + co} (aq) ksp = 8.10 × 10-12 Ag₂SO4 = 2Ag+(aq) + soy² (aq) ksp = 1.20 × 10-5 a) which salt will precipitate first? (b) What % of the first anion precipitated will remain in the solution. by the time the second anion starts to precipitate? (c) What is the effect of low pH (more acidic) condition on the separate of the carbonate and sulfate anions via silver precipitation? What is the effect of high pH (more basic)? Provide appropriate explanation per answerarrow_forwardPart 4. Butanoic acid (ka= 1.52× 10-5) has a partition coefficient of 3.0 (favors benzene) when distributed bet. water and benzene. What is the formal concentration of butanoic acid in each phase when 0.10M aqueous butanoic acid is extracted w❘ 25 mL of benzene 100 mL of a) at pit 5.00 b) at pH 9.00arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





